%0 Journal Article %T 具有半对称度量联络的广义Sasakian空间形式中的子流形的Chen-Ricci不等式<br>Chen-Ricci inequalities for submanifolds of generalized Sasakian space forms with a semi-symmetric metric connection %A 何国庆 %A 张量 %A 刘海蓉< %A br> %A HE Guo-qing %A ZHANG Liang %A LIU Hai-rong %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.0.2016.607 %X 摘要: 建立了具有半对称度量联络的广义Sasakian空间形式中关于子流形的Chen-Ricci不等式。 这些不等式刻画了子流形关于半对称度量联络的内在不变量(Ricci曲率)、k-Ricci曲率与外在不变量(平均曲率平方‖H‖2)之间的关系。<br>Abstract: We establish Chen-Ricci inequalities for submanifolds of generalized Sasakian space forms endowed with a semi-symmetric metric connection. These inequalities give relationships between the squared mean curvature and certain intrinsic invariants involving the Ricci curvature and the k-Ricci curvature with respect to the induced semi-symmetric metric connection of submanifolds %K 半对称度量联络 %K 广义Sasakian空间形式 %K Chen-Ricci 不等式 %K < %K br> %K generalized Sasakian space forms %K semi-symmetric metric connection %K Chen-Ricci inequalities %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2016.607