|
- 2015
B(H)上中心化子的一个局部特征
|
Abstract:
摘要: 设H是实数域或复数域F上的Hilbert空间, Ф:B(H)→B(H)是一个线性映射。本文证明了如果 2Ф(P)=PФ(P)+Ф(P)P对任意幂等算子P∈B(H)成立, 则存在λ∈F使得对任意A∈B(H), 有Ф(A)=λA。
Abstract: Let H be a Hilbert space over the real or complex field F. Suppose Ф:B(H)→B(H) is a linear map such that 2Ф(P)=PФ(P)+Ф(P)P holds for all idempotent operators P∈B(H), then there exists a λ∈F such that Ф(A)=λA for all A∈B(H)
[1] | KOSI-ULBL I, VUKMAN J. On centralizers of standard operator algebras and semisimple <em>H</em><sup>*</sup>-algebras[J]. Acta Math Hungar, 2006, 110(3):217-223. |
[2] | BRE?AR M. Centralizing mappings and derivations in prime rings[J]. J Algebra, 1993, 156(2):385-394. |
[3] | VUKMAN J. An identity related to centralizers in semiprime rings[J]. Comment Math Univ Carolin, 1999, 40(3):447-456. |
[4] | VUKMAN J, KOSI-ULBL I. On centralizers of semiprime rings[J]. Aequationes Math, 2003, 66(3):277-283. |
[5] | 齐霄霏, 杜拴平, 侯晋川. 中心化子的刻画[J]. 数学学报: 中文版, 2008, 51(3):509-516. QI Xiaofei, DU Shuanping, HOU Jinchuan. Characterization of centralizers[J]. Acta Math Sinica: Chinese Series, 2008, 51(3):509-516. |
[6] | VUKMAN J, KOSI-ULBL I. Centralizers on rings and algebras[J]. Bull Austral Math Soc, 2005, 71(2):225-234. |
[7] | 杨翠, 张建华. 套代数上的广义Jordan中心化子[J]. 数学学报: 中文版, 2010, 53(5): 975-980. YANG Cui, ZHANG Jianhua. Generalized Jordan centralizers on nest algebras[J]. Acta Math Sinica: Chinese Series, 2010, 53(5):975-980. |
[8] | ZALAR B. On centralizers of semiprime rings[J]. Comment Math Univ Carolin, 1991, 32(4):609-614. |
[9] | PEARCY C, TOPPING D. Sum of small numbers of idempotent[J]. Michigan Math J, 1967, 14(4):453-465. |
[10] | BEIDAR K I, MARTINDAL III W S, MIKHALEV A V. Rings with generalized identities[M]. New York: Marcel Dekker Inc, 1995. |
[11] | MOLN?R L. On centralizers of an <em>H</em><sup>*</sup>-algebra[J]. Publ Math Debrecen, 1995, 46(1-2):89-95. |