全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

二次Gr?bner基及Orlik-Solomon代数同构
Quadratic Gr?bner basis and the isomorphism of Orlik-Solomon algebras

DOI: 10.6040/j.issn.1671-9352.0.2015.080

Keywords: 二次构形,二次Gr?,标架,同构,bner基,Orlik-Solomon代数,
the quadratic arrangement
,the quadratic Gr?,isomorphism,bner basis,framing,Orlik-Solomon algebra

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: Orlik-Solomon代数是基于构形A的外代数E模去一个齐次理想I的商代数。研究了二次构形与二次Gr?bner基之间的关系,得到了中心构形A是一个二次构形当且仅当I具有二次Gr?bner基,给出了直接证明。对于构形的Orlik-Solomon代数,分别针对中心构形和仿射构形给出了其最高次分支的同构定理。
Abstract: The Orlik-Solomon algebra is the quotient of the exterior algebra E based on A by a homogeneous ideal I. The relations between a quadratic arrangement and a quadratic Gr?bner basis are studied. And the proof of the conclusion that a central arrangement is a quadratic arrangement if and only if I has a quadratic Gr?bner basis is given. We do some research on the Orlik-Solomon algebras for central and affine arrangements, and give the isomorphism theorems for the top dimensional parts of Orlik-Solomon algebras

References

[1]  GAO Ruimei, PEI Donghe. The supersolvable order of hyperplanes of an arrangement[J]. Communications in Mathematical Research, 2013, 29(3):231-238.
[2]  BJ?RNER A, ZIEGLER G. Broken circuit complexes: factorization and generalizations[J]. Journal of Combinatorial Theory: Series B, 1991, 5:96-126.
[3]  SCHECHTMAN V V, VARCHENKO A N. Arrangements of hyperplanes and Lie algebra homology[J]. Inventiones Mathematicae, 1991, 106:139-194.
[4]  PEARSON K J. Cohomology of OS algebras for quadratic arrangements[J]. Lecturas Matemáticas, 2001, 22:103-134.
[5]  高瑞梅, 裴东河. 构形的特征多项式和超可解性的算法[J]. 山东大学学报: 理学版, 2014, 49(2):51-57. GAO Ruimei, PEI Donghe. The algorithms of characteristic polynomial and supersolvability of a hyperplane arrangement[J]. Journal of Shandong University: Natural Science, 2014, 49(2):51-57.
[6]  K?MPF G, R?MER T. Homological properties of Orlik-Solomon algebras[J]. Manuscripta Mathematica, 2009, 129(2):181-210.
[7]  ORLIK P, SOLOMON L. Combinatorics and topology of complements of hyperplanes[J]. Inventiones Mathematicae, 1980, 56:167-189.
[8]  YOSHINAGA M. The chamber basis of the Orlik-Solomon algebra and Aomoto complex[J]. Arkivf?r Matematik, 2009, 47(2):393-407.
[9]  YUZVINSKY S. Orlik-Solomon algebras in algebra and topology[J]. Russian Mathematical Surveys, 2001, 56: 293-364.
[10]  FALK M. Line-closed matroids, quadratic algebras, and formal arrangements[J]. Advances in Applied Mathematics, 2002, 28:250-271.
[11]  ORLIK P, TERAO H. Arrangements of hyperplanes[M]. Grundlehren der Mathematischen Wissenschaften, 300, Berlin: Springer-Verlag, 1992: 1-325.
[12]  PAPADIMA S, YUZVINSKY S. On rational K[π,1] spaces and Koszul algebras[J]. Journal of Pure and Applied Algebra, 1999, 144:157-167.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133