|
- 2015
二次Gr?bner基及Orlik-Solomon代数同构
|
Abstract:
摘要: Orlik-Solomon代数是基于构形A的外代数E模去一个齐次理想I的商代数。研究了二次构形与二次Gr?bner基之间的关系,得到了中心构形A是一个二次构形当且仅当I具有二次Gr?bner基,给出了直接证明。对于构形的Orlik-Solomon代数,分别针对中心构形和仿射构形给出了其最高次分支的同构定理。
Abstract: The Orlik-Solomon algebra is the quotient of the exterior algebra E based on A by a homogeneous ideal I. The relations between a quadratic arrangement and a quadratic Gr?bner basis are studied. And the proof of the conclusion that a central arrangement is a quadratic arrangement if and only if I has a quadratic Gr?bner basis is given. We do some research on the Orlik-Solomon algebras for central and affine arrangements, and give the isomorphism theorems for the top dimensional parts of Orlik-Solomon algebras
[1] | GAO Ruimei, PEI Donghe. The supersolvable order of hyperplanes of an arrangement[J]. Communications in Mathematical Research, 2013, 29(3):231-238. |
[2] | BJ?RNER A, ZIEGLER G. Broken circuit complexes: factorization and generalizations[J]. Journal of Combinatorial Theory: Series B, 1991, 5:96-126. |
[3] | SCHECHTMAN V V, VARCHENKO A N. Arrangements of hyperplanes and Lie algebra homology[J]. Inventiones Mathematicae, 1991, 106:139-194. |
[4] | PEARSON K J. Cohomology of OS algebras for quadratic arrangements[J]. Lecturas Matemáticas, 2001, 22:103-134. |
[5] | 高瑞梅, 裴东河. 构形的特征多项式和超可解性的算法[J]. 山东大学学报: 理学版, 2014, 49(2):51-57. GAO Ruimei, PEI Donghe. The algorithms of characteristic polynomial and supersolvability of a hyperplane arrangement[J]. Journal of Shandong University: Natural Science, 2014, 49(2):51-57. |
[6] | K?MPF G, R?MER T. Homological properties of Orlik-Solomon algebras[J]. Manuscripta Mathematica, 2009, 129(2):181-210. |
[7] | ORLIK P, SOLOMON L. Combinatorics and topology of complements of hyperplanes[J]. Inventiones Mathematicae, 1980, 56:167-189. |
[8] | YOSHINAGA M. The chamber basis of the Orlik-Solomon algebra and Aomoto complex[J]. Arkivf?r Matematik, 2009, 47(2):393-407. |
[9] | YUZVINSKY S. Orlik-Solomon algebras in algebra and topology[J]. Russian Mathematical Surveys, 2001, 56: 293-364. |
[10] | FALK M. Line-closed matroids, quadratic algebras, and formal arrangements[J]. Advances in Applied Mathematics, 2002, 28:250-271. |
[11] | ORLIK P, TERAO H. Arrangements of hyperplanes[M]. Grundlehren der Mathematischen Wissenschaften, 300, Berlin: Springer-Verlag, 1992: 1-325. |
[12] | PAPADIMA S, YUZVINSKY S. On rational K[π,1] spaces and Koszul algebras[J]. Journal of Pure and Applied Algebra, 1999, 144:157-167. |