%0 Journal Article %T 二次Gr?bner基及Orlik-Solomon代数同构<br>Quadratic Gr?bner basis and the isomorphism of Orlik-Solomon algebras %A 高瑞梅 %A 孙艳< %A br> %A GAO Rui-mei %A SUN Yan %J 山东大学学报(理学版) %D 2015 %R 10.6040/j.issn.1671-9352.0.2015.080 %X 摘要: Orlik-Solomon代数是基于构形A的外代数E模去一个齐次理想I的商代数。研究了二次构形与二次Gr?bner基之间的关系,得到了中心构形A是一个二次构形当且仅当I具有二次Gr?bner基,给出了直接证明。对于构形的Orlik-Solomon代数,分别针对中心构形和仿射构形给出了其最高次分支的同构定理。<br>Abstract: The Orlik-Solomon algebra is the quotient of the exterior algebra E based on A by a homogeneous ideal I. The relations between a quadratic arrangement and a quadratic Gr?bner basis are studied. And the proof of the conclusion that a central arrangement is a quadratic arrangement if and only if I has a quadratic Gr?bner basis is given. We do some research on the Orlik-Solomon algebras for central and affine arrangements, and give the isomorphism theorems for the top dimensional parts of Orlik-Solomon algebras %K 二次构形 %K 二次Gr? %K 标架 %K 同构 %K bner基 %K Orlik-Solomon代数 %K < %K br> %K the quadratic arrangement %K the quadratic Gr? %K isomorphism %K bner basis %K framing %K Orlik-Solomon algebra %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2015.080