|
- 2017
一类稀疏图的邻和可区别边色数
|
Abstract:
摘要: 设φ为图G的正常k-边染色。 对任意v∈V(G),令fφ(v)=∑uv∈E(G)φ(uv)。 若对每条边uv∈E(G)都有fφ(u)≠fφ(v),则称φ为图G的k-邻和可区别边染色。 图G存在k-邻和可区别边染色的k的最小值称为G的邻和可区别边色数,记作 χ'Σ(G)。 确定了一类稀疏图的邻和可区别边色数,得到:若图G不含孤立边,Δ≥6且mad(G)≤5/2,则 χ'Σ(G)=Δ当且仅当G不含相邻最大度点。
Abstract: Let φ be a proper k-edge coloring of G. For each vertex v∈V(G), set fφ(v)=∑uv∈E(G)φ(uv). φ is called a k-neighbor sum distinguishing edge coloring of G if fφ(u)≠fφ(v) for each edge uv∈E(G). The smallest k such that G has a k-neighbor sum distinguishing edge coloring is called the neighbor sum distinguishing index, denoted by χ'Σ(G). The neighbor sum distinguishing index of a kind of sparse graphs is determined. It is proved that if G is a graph without isolated edges, Δ≥6 and mad(G)≤5/2, then χ'Σ(G)=Δ if and only if G has no adjacent vertices of maximum degree
[1] | WANG Yi, CHENG Jian, LUO Rong, et al. Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs[J]. J Comb Optim, 2016, 31(2):874-880. |
[2] | WANG Weifan, WANG Yiqiao. Adjacent vertex-distinguishing edge colorings of <i>K</i><sub>4</sub>-minor free graphs[J]. Appl Math Lett, 2011, 24(12):2034-2037. |
[3] | HUANG Danjun, MIAO Zhengke, WANG Weifan. Adjacent vertex distinguishing indices of planar graphs without 3-cycles[J]. Discrete Math, 2015, 338(3):139-148. |
[4] | DONG Aijun, WANG Guanghui. Neighbor sum distinguishing coloring of some graphs[J]. Discrete Math Algorithms Appl, 2012, 4(4):1250047(12 pages). |
[5] | WANG Weifan, WANG Yiqiao. Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree[J]. J Comb Optim, 2010, 19(4):471-485. |
[6] | WANG Guanghui, CHEN Zhumin, WANG Jihui. Neighbor sum distinguishing index of planar graphs[J]. Discrete Math, 2014, 334:70-73. |
[7] | DONG Aijun, WANG Guanghui, ZHANG Jianghua. Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree[J]. Discrete Appl Math, 2014, 166:84-90. |
[8] | GAO Yuping, WANG Guanghui, WU Jianliang. Neighbor sum distinguishing edge colorings of graphs with small maximum average degree[J]. Bull Malays Math Sci Soc, 2016, 39(Supplement 1):247-256. |
[9] | YU Xiaowei, QU Cunquan, WANG Guanghui, et al. Adjacent vertex distinguishing colorings by sum of sparse graphs[J]. Discrete Math, 2016, 339(1):62-71. |
[10] | LI Hualong, DING Laihao, LIU Bingqiang, et al. Neighbor sum distinguishing total colorings of planar graphs[J]. J Comb Optim, 2015, 30(3):675-688. |
[11] | Alon N. Combinatorial Nullstellensatz[J]. Combin Probab Comput, 1999, 8(1/2):7-29. |
[12] | BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: North-Holland, 1976. |
[13] | ZHANG Zhongfu, LIU Linzhong, WANG Jianfang. Adjacent strong edge coloring of graphs[J]. Appl Math Lett, 2002, 15(5):623-626. |
[14] | FLANDRIN E, MARCZYK A, PRZYBY?O J, et al. Neighbor sum distinguishing index[J]. Graphs and Combin, 2013, 29(5):1329-1336. |
[15] | WANG Guanghui, YAN Guiying. An improved upper bound for the neighbor sum disthinguishing index of graphs[J]. Discrete Appl Math, 2014, 175:126-128. |