全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

一类稀疏图的邻和可区别边色数
Neighbor sum distinguishing index of a kind of sparse graphs

DOI: 10.6040/j.issn.1671-9352.0.2016.326

Keywords: 邻和可区别边染色,稀疏图,最大平均度,
maximum average degree
,neighbor sum distinguishing edge coloring,sparse graph

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 设φ为图G的正常k-边染色。 对任意v∈V(G),令fφ(v)=∑uv∈E(G)φ(uv)。 若对每条边uv∈E(G)都有fφ(u)≠fφ(v),则称φ为图G的k-邻和可区别边染色。 图G存在k-邻和可区别边染色的k的最小值称为G的邻和可区别边色数,记作 χ'Σ(G)。 确定了一类稀疏图的邻和可区别边色数,得到:若图G不含孤立边,Δ≥6且mad(G)≤5/2,则 χ'Σ(G)=Δ当且仅当G不含相邻最大度点。
Abstract: Let φ be a proper k-edge coloring of G. For each vertex v∈V(G), set fφ(v)=∑uv∈E(G)φ(uv). φ is called a k-neighbor sum distinguishing edge coloring of G if fφ(u)≠fφ(v) for each edge uv∈E(G). The smallest k such that G has a k-neighbor sum distinguishing edge coloring is called the neighbor sum distinguishing index, denoted by χ'Σ(G). The neighbor sum distinguishing index of a kind of sparse graphs is determined. It is proved that if G is a graph without isolated edges, Δ≥6 and mad(G)≤5/2, then χ'Σ(G)=Δ if and only if G has no adjacent vertices of maximum degree

References

[1]  WANG Yi, CHENG Jian, LUO Rong, et al. Adjacent vertex-distinguishing edge coloring of 2-degenerate graphs[J]. J Comb Optim, 2016, 31(2):874-880.
[2]  WANG Weifan, WANG Yiqiao. Adjacent vertex-distinguishing edge colorings of <i>K</i><sub>4</sub>-minor free graphs[J]. Appl Math Lett, 2011, 24(12):2034-2037.
[3]  HUANG Danjun, MIAO Zhengke, WANG Weifan. Adjacent vertex distinguishing indices of planar graphs without 3-cycles[J]. Discrete Math, 2015, 338(3):139-148.
[4]  DONG Aijun, WANG Guanghui. Neighbor sum distinguishing coloring of some graphs[J]. Discrete Math Algorithms Appl, 2012, 4(4):1250047(12 pages).
[5]  WANG Weifan, WANG Yiqiao. Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree[J]. J Comb Optim, 2010, 19(4):471-485.
[6]  WANG Guanghui, CHEN Zhumin, WANG Jihui. Neighbor sum distinguishing index of planar graphs[J]. Discrete Math, 2014, 334:70-73.
[7]  DONG Aijun, WANG Guanghui, ZHANG Jianghua. Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree[J]. Discrete Appl Math, 2014, 166:84-90.
[8]  GAO Yuping, WANG Guanghui, WU Jianliang. Neighbor sum distinguishing edge colorings of graphs with small maximum average degree[J]. Bull Malays Math Sci Soc, 2016, 39(Supplement 1):247-256.
[9]  YU Xiaowei, QU Cunquan, WANG Guanghui, et al. Adjacent vertex distinguishing colorings by sum of sparse graphs[J]. Discrete Math, 2016, 339(1):62-71.
[10]  LI Hualong, DING Laihao, LIU Bingqiang, et al. Neighbor sum distinguishing total colorings of planar graphs[J]. J Comb Optim, 2015, 30(3):675-688.
[11]  Alon N. Combinatorial Nullstellensatz[J]. Combin Probab Comput, 1999, 8(1/2):7-29.
[12]  BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: North-Holland, 1976.
[13]  ZHANG Zhongfu, LIU Linzhong, WANG Jianfang. Adjacent strong edge coloring of graphs[J]. Appl Math Lett, 2002, 15(5):623-626.
[14]  FLANDRIN E, MARCZYK A, PRZYBY?O J, et al. Neighbor sum distinguishing index[J]. Graphs and Combin, 2013, 29(5):1329-1336.
[15]  WANG Guanghui, YAN Guiying. An improved upper bound for the neighbor sum disthinguishing index of graphs[J]. Discrete Appl Math, 2014, 175:126-128.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133