%0 Journal Article %T 一类稀疏图的邻和可区别边色数<br>Neighbor sum distinguishing index of a kind of sparse graphs %A 潘文华 %A 徐常青< %A br> %A PAN Wen-hua %A XU Chang-qing %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.0.2016.326 %X 摘要: 设φ为图G的正常k-边染色。 对任意v∈V(G),令fφ(v)=∑uv∈E(G)φ(uv)。 若对每条边uv∈E(G)都有fφ(u)≠fφ(v),则称φ为图G的k-邻和可区别边染色。 图G存在k-邻和可区别边染色的k的最小值称为G的邻和可区别边色数,记作 χ'Σ(G)。 确定了一类稀疏图的邻和可区别边色数,得到:若图G不含孤立边,Δ≥6且mad(G)≤5/2,则 χ'Σ(G)=Δ当且仅当G不含相邻最大度点。<br>Abstract: Let φ be a proper k-edge coloring of G. For each vertex v∈V(G), set fφ(v)=∑uv∈E(G)φ(uv). φ is called a k-neighbor sum distinguishing edge coloring of G if fφ(u)≠fφ(v) for each edge uv∈E(G). The smallest k such that G has a k-neighbor sum distinguishing edge coloring is called the neighbor sum distinguishing index, denoted by χ'Σ(G). The neighbor sum distinguishing index of a kind of sparse graphs is determined. It is proved that if G is a graph without isolated edges, Δ≥6 and mad(G)≤5/2, then χ'Σ(G)=Δ if and only if G has no adjacent vertices of maximum degree %K 邻和可区别边染色 %K 稀疏图 %K 最大平均度 %K < %K br> %K maximum average degree %K neighbor sum distinguishing edge coloring %K sparse graph %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2016.326