全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

带导数项共振问题的可解性
Existence results of a resonance problem with derivative terms

DOI: 10.6040/j.issn.1671-9352.0.2017.266

Keywords: 连通集,Nagumo 条件,共振,存在性,无序上下解,
existence
,resonance,Nagumo condition,connectivity,disordered lower and upper solutions

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 得到带导数项共振问题:{u″(t)=f(t,u(t),u'(t)), t∈[0,1],u(0)=εu'(0), u(1)=αu(η)。在共振条件α(η+ε)=1+ε下解的存在性, 其中常数ε∈[0,+∞), α∈(0,∞), η∈(0,1)且αη2<1, 函数f:[0,1]×R2→R连续且满足Nagumo条件。主要结果的证明基于上下解方法和紧向量场方程的解集连通理论。
Abstract: This paper shows the existence results of a resonance problem with derivative terms{u″(t)=f(t,u(t),u'(t)), t∈[0,1],u(0)=εu'(0), u(1)=αu(η).under the condition of α(η+ε)=1+ε at resonance, where ε∈[0,+∞), α∈(0,∞), η∈(0,1)are given constants, and αη<21. f:[0,1]×R2→R is continuous and satisfies the Nagumo condition. The proof of the main results is based on the method of upper and lower solutions and the connectivity theory of the solution set

References

[1]  ZHANG Guowei, SUN Jingxian. Multiple positive solutions of singular second-order <i>m</i>-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2006, 317(1):442-447.
[2]  MA Ruyun. Positive solutions of a nonlinear three-point boundary value problem[J]. Electronic Journal of Differential Equations, 1999, 34(1):1-8.
[3]  MA Ruyun. Multiplicity results for a three-point boundary value problem at resonance[J]. Nonlinear Analysis, 2003, 53(6):777-789.
[4]  AN Yulian. Existence of solutions for a three-point boundary value problem at resonance[J]. Nonlinear Analysis, 2006, 65(6):1633-1643.
[5]  MA Ruyun. Nonlinear discrete Sturm-Liouville problems at resonance[J]. Nonlinear Analysis, 2007, 67(11):3050-3057.
[6]  BERNFELD S R, LAKSHMIKANTHAM V. An introduction to nonlinear boundary value problem[M]. New York: Academic Press, 1974: 25-31.
[7]  ZHANG Guowei, SUN Jingxian. Positive solutions of <i>m</i>-point boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2004, 291(1):406-418.
[8]  IIIN V A, MOISEEV E I. Non-local boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects[J]. Journal of Differential Equations, 1987, 23(7):803-810.
[9]  HAN Xiaoling. Positive solutions for a three-point boundary value problem at resonance[J]. Journal of Mathematical Analysis and Applications, 2007, 336(2):556-568.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133