%0 Journal Article %T 带导数项共振问题的可解性<br>Existence results of a resonance problem with derivative terms %A 叶芙梅 %J 山东大学学报(理学版) %D 2018 %R 10.6040/j.issn.1671-9352.0.2017.266 %X 摘要: 得到带导数项共振问题:{u″(t)=f(t,u(t),u'(t)), t∈[0,1],u(0)=εu'(0), u(1)=αu(η)。在共振条件α(η+ε)=1+ε下解的存在性, 其中常数ε∈[0,+∞), α∈(0,∞), η∈(0,1)且αη2<1, 函数f:[0,1]×R2→R连续且满足Nagumo条件。主要结果的证明基于上下解方法和紧向量场方程的解集连通理论。<br>Abstract: This paper shows the existence results of a resonance problem with derivative terms{u″(t)=f(t,u(t),u'(t)), t∈[0,1],u(0)=εu'(0), u(1)=αu(η).under the condition of α(η+ε)=1+ε at resonance, where ε∈[0,+∞), α∈(0,∞), η∈(0,1)are given constants, and αη<21. f:[0,1]×R2→R is continuous and satisfies the Nagumo condition. The proof of the main results is based on the method of upper and lower solutions and the connectivity theory of the solution set %K 连通集 %K Nagumo 条件 %K 共振 %K 存在性 %K 无序上下解 %K < %K br> %K existence %K resonance %K Nagumo condition %K connectivity %K disordered lower and upper solutions %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2017.266