全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

k-连通图中生成树和完美匹配上的可收缩边
The contractible edges of a spanning tree and a perfect matching in k-connected graphs

DOI: 10.6040/j.issn.1671-9352.0.2016.148

Keywords: k-连通图,可收缩边,生成树,完美匹配,
contractible edge
,perfect matching,k-connect graph,spanning tree

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 给出了k-连通图生成树和完美匹配上的可收缩边数目,得到如下结果:任意断片的阶都大于「k/2的k-连通图中生成树上至少有4条可收缩边;若该k-连通图中存在完美匹配,则完美匹配上至少有「k/2+1条可收缩边。
Abstract: The numbers of contractible edges of a spanning tree and a perfect matching in k-connected graphs are given. The conclusions are that if every fragment of a k-connected graph has an order more than 「k/2, then there exist at least four contractible edges on the spanning tree of this graph. Furthermore, if this graph has a perfect matching, then there exist at least 「k/2+1 contractible edges on the perfect matching

References

[1]  MARTIONV N. Uncontractible 4-connected graphs[J]. Graph Theory, 1982, 6(3):343-344.
[2]  王珊珊.<i>k</i>-连通图中最长圈上可收缩边的数目[J].山东大学学报(理学版),2015,50(10):27-31. WANG Shanshan. On the number of contractible edges of longest cycles in <i>k</i>-connected graphs[J]. Journal of Shandong University(Natural Science), 2015, 50(10):27-31.
[3]  BONDY J A, MURTY U S R. Graph theory with applications [M]. London: The Macmillan Press Ltd, 1976.
[4]  KRIESELL M. A degree sum condition for the existence of a contractible edge in a k-connected graph[J]. Comb Theory Ser, 2001, B82:81-101.
[5]  EGAWA Y. Contractible edges in n-connected graphs with minimum degree greater than or equal to[5<i>n</i>/4] [J]. Graphs Comb, 1990, 7:15-21.
[6]  KRIESELL M. A survey on contractible edges in graph of a prescribed vertex connectivity[J]. Graphs and Combinatorics, 2002, 18(1):1-30.
[7]  杨朝霞.某些5-连通图中最长圈上的可收缩边[J].山东大学学报(理学版),2008,43(6):12-14. YANG Zhaoxia. The contractible edges of the longest cycle in some 5-connected graphs[J]. Journal of Shandong University(Natural Science), 2008, 43(6):12-14.
[8]  TUTTE W T.A theory of 3-connected graphs[J]. Indag Math, 1961, 23:441-455.
[9]  DEAN N. Distribution of contractible edges in <i>k</i>-connected graphs[J]. Comb. Theory, Ser.B, 1990, 48:1-5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133