%0 Journal Article %T k-连通图中生成树和完美匹配上的可收缩边<br>The contractible edges of a spanning tree and a perfect matching in k-connected graphs %A 王倩 %J 山东大学学报(理学版) %D 2016 %R 10.6040/j.issn.1671-9352.0.2016.148 %X 摘要: 给出了k-连通图生成树和完美匹配上的可收缩边数目,得到如下结果:任意断片的阶都大于「k/2的k-连通图中生成树上至少有4条可收缩边;若该k-连通图中存在完美匹配,则完美匹配上至少有「k/2+1条可收缩边。<br>Abstract: The numbers of contractible edges of a spanning tree and a perfect matching in k-connected graphs are given. The conclusions are that if every fragment of a k-connected graph has an order more than 「k/2, then there exist at least four contractible edges on the spanning tree of this graph. Furthermore, if this graph has a perfect matching, then there exist at least 「k/2+1 contractible edges on the perfect matching %K < %K i> %K k< %K /i> %K -连通图 %K 可收缩边 %K 生成树 %K 完美匹配 %K < %K br> %K contractible edge %K perfect matching %K < %K i> %K k< %K /i> %K -connect graph %K spanning tree %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2016.148