|
- 2015
转移函数保半环赋值代数轮廓解的条件
|
Abstract:
摘要: 对转移映射保半环诱导的赋值代数的轮廓解的问题进行了研究.得到若转移映射f是一个反保序的半环同态,则f是保轮廓解的.如果两个半环间的一个转移映射f 是单调的,则若原赋值与转移后对应的新赋值的轮廓解都非空,则一定存在一个轮廓x0,它是新赋值的轮廓解,也是原赋值的轮廓解,即x0∈Cφ∩Cfφ.
Abstract: The map preserving solution configuration of valuation algebra induced by a semiring is studied. The transfer function f preserves solution configuration is obtained if f is an order-reflecting semiring homomorphism. In addition, if the transfer function f is monotonous, then there exists a solution configuration x0of the new valuation such that x0 is also a solution configuration of the primal valuation when the set of solution configuration of the two valuations are not empty
[1] | GUAN Xuechong, LI Yongming, FENG Feng. A new order relation on fuzzy soft sets and its application[J]. Soft Computing, 2013, 17(1):63-70. |
[2] | GUAN Xuechong. On a condition for semirings to induce compact information algebras[J]. Electronic Notes in Theoretical Computer Science, 2014, 301:39-48. |
[3] | KOHLAS J. Information algebras: generic structures for inference[M]. New York: Springer-Verlag, 2003. |
[4] | GUAN Xuechong, Li Yongming. On two types of continuous information algebras[J]. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 2012, 20(5):654-671. |
[5] | KOHLAS J,WILSON N. Semiring induced valuation algebras: exact and approximate local computation algorithms[J]. Artificial Intelligence, 2008, 172:1360-1399. |
[6] | LI Sanjiang, YING Mingsheng. Soft constraint abstraction based on semiring homomorphism[J]. Theoretical Computer Science, 2008, 403:192-201. |
[7] | POULY M. A generic framework for local computation[D]. Switzerland: University of Fribourg, 2008. |
[8] | 管雪冲. 赋值代数中若干问题的研究[D]. 西安:陕西师范大学, 2011. GUAN Xuechong. The study of some questions about valuation algebra[D]. Xi'an: Shaanxi Normal University, 2011. |