%0 Journal Article %T 转移函数保半环赋值代数轮廓解的条件<br>On conditions for transfer function to preserve solution configuration of semiring-induced valuation algebras %A 许格妮 %A 李永明< %A br> %A XU Ge-ni %A LI Yong-ming %J 山东大学学报(理学版) %D 2015 %R 10.6040/j.issn.1671-9352.0.2014.372 %X 摘要: 对转移映射保半环诱导的赋值代数的轮廓解的问题进行了研究.得到若转移映射f是一个反保序的半环同态,则f是保轮廓解的.如果两个半环间的一个转移映射f 是单调的,则若原赋值与转移后对应的新赋值的轮廓解都非空,则一定存在一个轮廓x0,它是新赋值的轮廓解,也是原赋值的轮廓解,即x0∈Cφ∩Cfφ.<br>Abstract: The map preserving solution configuration of valuation algebra induced by a semiring is studied. The transfer function f preserves solution configuration is obtained if f is an order-reflecting semiring homomorphism. In addition, if the transfer function f is monotonous, then there exists a solution configuration x0of the new valuation such that x0 is also a solution configuration of the primal valuation when the set of solution configuration of the two valuations are not empty %K 赋值代数 %K 轮廓解 %K 转移映射 %K 半环 %K < %K br> %K valuation algebra %K semiring %K optimal solution %K transfer function %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2014.372