全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

伪黎曼空间型中具有常数量曲率的类空子流形
Space-like submanifolds with constant scalar curvature in the pseudo-Riemannian space forms

DOI: 10.6040/j.issn.1671-9352.0.2017.021

Keywords: 伪黎曼空间型,类空子流形,第二基本形式,常数量曲率,
pseudo-Riemannian space form
,space-like submanifold,constant scalar curvature,the second fundamental form

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 设M n是伪黎曼空间型N n+pq(c)(1≤q≤p)中具有常数量曲率R的n维完备类空子流形。 假定M n在N n+pq(c)中的第二基本形式是局部类时的情况下, 应用Simons型不等式以及Cheng-Yau引进的二阶微分算子, 得到了M n的一个刚性结果。
Abstract: Let M n be a space-like submanifold immersed in a pseudo-Riemannian space form N n+pq(c) with constant scalar curvature. Assume the second fundamental form of M n in N n+pq(c) is locally time-like, by applying Simons inequality and Cheng-Yau modified operator, a rigidity theorem of M n is obtained

References

[1]  AKUTAGAWA K. On space-like hypersurfaces with constant mean curvature in the de Sitter space[J]. Mathematische Zeitschrift, 1987, 196(1):13-19.
[2]  MONTIEL S. An integral inequality for compact space-like hypersurfaces in de Sitter space and applications to the case of constant mean curvature[J]. Indiana University Mathematics Journal, 1988, 37(4):909-917.
[3]  LIU Ximin. Space-like submanifolds in the de Sitter spaces[J]. Journal of Geometry and Physics, 2002, 40(3):370-378.
[4]  CHENG Qingming, ISHIKAWA S. Complete maximal spacelike submanifolds[J]. Kodai Mathematical Journal, 1997, 20(3):208-217.
[5]  ZHANG Shicheng. Rigidity theorem for complete spacelike submanifold in <i>S<sup>n+p</sup><sub>q</sub></i>(1)with constant scalar curvature[J]. Bulletin of the Belgian Mathematical Society. Simon Stevin, 2012, 19(4):733-746.
[6]  CAMARGO F E C, CHAVES R M B, DE SOUSA JR L A M. New characterizations of complete spacelike submanifolds in semi-Riemannian space forms[J]. Kodai Mathematical Journal, 2009, 32(2):209-230.
[7]  GODDARD A J. Some remarks on the existence of space-like hypersurfaces of constant mean curvature[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1977, 82(3):489-495.
[8]  SHU Shichang, LIU Sanyang. Complete space-like hypersurfaces with constant scalar curvature in de Sitter spaces[J]. Balkan Journal of Geometry and its Appliations, 2004, 9(2):82-91.
[9]  CAMINHA A. A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds[J]. Differential Geometry and its Applications, 2006, 24(6):652-659.
[10]  SHU Shichang, CAO Juanjuan. Curvature and rigidity of complete space-like submanifolds in a de Sitter space[J]. International Mathematical Forum, 2010, 5(4):175-184.
[11]  ZHANG Shicheng. Rigidity theorems for complete spacelike submanifold in <i>S<sup>n+p</sup><sub>q</sub></i>(1)[J]. Geometriae Dedicata, 2014, 169(1):175-186.
[12]  MARIANO M. On complete spacelike submanifolds with second fundamental form locally timelike in a semi-Riemannian space form[J]. Journal of Geometry and Physics, 2010, 60(5):720-728.
[13]  周俊东, 宋卫东, 徐传友. 关于de Sitter空间中类空子流形的一些刚性定理[J]. 纯粹数学与应用数学, 2012, 28(1):73-79. ZHOU Jundong, SONG Weidong, XU Chuanyou. Rigity theorems on space-like submanifolds in de Sitter spaces[J]. Pure and Applied Mathematics, 2012, 28(1):73-79.
[14]  SANTOS W. Submanifolds with parallel mean curvature vector in spheres[J]. Tohoku Mathematical Journal, 1994, 46(3):403-415.
[15]  CHENG Shiuyuen, YAU Shingtung. Maximal space-like hypersurfaces in the Lorentz-Minkowski spaces[J]. Annals of Mathematics, 1976, 104(3):407-419.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133