%0 Journal Article %T 伪黎曼空间型中具有常数量曲率的类空子流形<br>Space-like submanifolds with constant scalar curvature in the pseudo-Riemannian space forms %A 文海燕 %A 刘建成< %A br> %A WEN Hai-yan %A LIU Jian-cheng %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.0.2017.021 %X 摘要: 设M n是伪黎曼空间型N n+pq(c)(1≤q≤p)中具有常数量曲率R的n维完备类空子流形。 假定M n在N n+pq(c)中的第二基本形式是局部类时的情况下, 应用Simons型不等式以及Cheng-Yau引进的二阶微分算子, 得到了M n的一个刚性结果。<br>Abstract: Let M n be a space-like submanifold immersed in a pseudo-Riemannian space form N n+pq(c) with constant scalar curvature. Assume the second fundamental form of M n in N n+pq(c) is locally time-like, by applying Simons inequality and Cheng-Yau modified operator, a rigidity theorem of M n is obtained %K 伪黎曼空间型 %K 类空子流形 %K 第二基本形式 %K 常数量曲率 %K < %K br> %K pseudo-Riemannian space form %K space-like submanifold %K constant scalar curvature %K the second fundamental form %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2017.021