全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

一类三种群食物链模型中交错扩散引起的Turing不稳定
Turing instability induced by cross-diffusion in a three-species food chain model

DOI: 10.6040/j.issn.1671-9352.0.2016.286

Keywords: 食物链模型,Turing不稳定,Turing斑图,交错扩散,
cross-diffusion
,turing instability,turing pattern,food chain model

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 研究了一类三种群食物链模型的强耦合交错扩散系统。 首先通过构造Lyapunov函数证明唯一的正平衡点在ODE系统下是全局渐近稳定的, 当交错扩散系数均为零时, 唯一的正平衡点仍是全局渐近稳定的。 当引入交错扩散时, 正平衡点则变得不稳定。 利用Routh-Hurwitz准则和Descartes符号法则证明了大的交错扩散系数(k21或k32足够大时)可以导致平衡点由原来的稳定变得不稳定。 最后利用数学软件Matlab 对我们的结果进行数值模拟, 得到了不同类型的Turing斑图, 包括六边形、条状以及二者共存的斑图。
Abstract: This paper considers a strong coupled cross-diffusion system about a three-species food chain model. We first prove that the unique positive equilibrium solution is globally linearly stable for the ODE system and remains globally linearly stable when the reaction-diffusion system without cross-diffusion by constructing Lyapunov functions. Then we use the Routh-Hurwitz criterion and Descartes' rule to illustrate that the unique positive equilibrium solution becomes linearly unstable only when the cross-diffusion plays a role in this reaction-diffusion system. Finally, numerical simulations are performed to test our theoretical results by means of Matlab. We can obtain different types of patterns including spotted, striped and mixture patterns

References

[1]  王育全, 刘来福. 具有 Monod-Haldane功能反应的一类食物链模型的动力学行为[J]. 数学物理学报, 2007, 27(1):79-89. WANG Yuquan, LIU Laifu. On the dynamics of a food chain with Monod-Haldane functional response[J]. Acta Mathematics Scientia, 2007, 27(1):79-89.
[2]  伏升茂, 温紫娟, 崔尚斌. 三种群食物链交错扩散模型的整体解[J]. 数学学报, 2007, 50(1):75-89. FU Shengmao, WEN Zijuan, CUI Shangbin. On global solutions for the three-species food-chain model with cross-diffusion[J]. Acta Mathematica Sinica, 2007, 50(1):75-89.
[3]  TURING A M. The chemical basis of morphogenesis[J]. Philosophical Transactions of the Royal of London. Series B, Biological Sciences, 1952, 237(64):37-72.
[4]  李海侠,李艳玲. 一类带B-D反应项的食物链模型正解的稳定性和唯一性[J]. 山东大学学报(理学版), 2013, 48(9):103-110. LI Haixia, LI Yanling. Stability and uniqueness of positive solutions for a food chain model with B-D functional response [J]. Journal of Shandong University(Natural Science), 2013, 48(9):103-110.
[5]  杨斌, 王静. 具有 Holling Ⅳ 型功能性反应的非自治三种群食物链模型的周期解[J]. 东北师大学报(自然科学版), 2012, 44(1):10-15. YANG Bin, WANG Jing. Periodic solution of a nonautonomous three-species food-chain model with the Holling Ⅳ functional response[J]. Journal of Northeast Normal University(Natural Science), 2012, 44(1):10-15.
[6]  PARSHAD R D, KUMARI N, KASIMOV A R, et al. Turing patterns and long-time behavior in a three-species food-chain model[J]. Mathematical Biosciences, 2014, 254(8):83-102.
[7]  TANG Xiaosong, SONG Yongli. Cross-diffusion induced spatiotemporal patterns in a predator—prey model with herd behavior[J]. Nonlinear Analysis: Real World Applications, 2015, 24:36-49.
[8]  LING Zhi, ZHANG Lai, LIN Zhigui. Turing pattern formation in a predator—prey system with cross diffusion[J]. Applied Mathematical Modelling, 2014, 38(21):5022-5032.
[9]  PETER Y H P, WANG M X. Strategy and stationary pattern in a three-species predator-prey model[J]. Journal of Differential Equations, 2004, 200(2):245-273.
[10]  LI Jianjun, GAO Wenjie. A strongly coupled predator-prey system with modified Holling-Tanner functional response[J]. Computer and Mathematics with Applications, 2010, 60(7):1908-1916.
[11]  LOTFI E M, MAZIANE M, HATTAF K, et al. Partial differential equations of an epidemic model with spatial diffusion[J]. International Journal of Partial Differential Equations, 2014(2014):186437-186437.6
[12]  胡文勇, 邵元智. 局域浓度调控扩散系数的次氯酸-碘离子-丙二酸系统图灵斑图形成中的反常扩散[J]. 物理学报, 2014, 63(23):238202. HU Wenyong, SHAO Yuanzhi. Anomalous diffusion in the formation of Turing pattern for the chlorine-iodine-malonic-acid system with a local concentration depended diffusivity [J]. Journal of Physics, 2014, 63(23): 238202.
[13]  CHIA-Ven Pao. Nonlinear Parabolic and Elliptic Equations[M] , New York: Plenum Press, 1992.
[14]  马知恩, 周义仓. 种群生态学的数学建模与研究[M]. 安徽: 安徽教育出版社, 1996. MA Zhien, ZHOU Yicang. Mathematical modeling and research of population ecology[M]. Anhui: Anhui Education Press, 1996.
[15]  Hale J K. Ordinary differential equations[M]. FL:Krieger, Malabar, 1980.
[16]  YE Qixiao, LI Zhengyuan, WANG Mingxin, et al. Introduction to reaction-diffusion equations[M]. Beijing: Science Press, 1990.
[17]  LV S, ZHAO M. The dynamic complexity of a three species food chain model[J]. Chaos, Solitons and Fractals, 2008, 37(5):1469-1480.
[18]  MCCANN K, YODZIS P. Bifurcation structure of a three-species food-chain model[J]. Theoretical population biology, 1995, 48(2):93-125.
[19]  屈菲. 带扩散项的三级营养食物链模型斑图的存在性[D]. 兰州:西北师范大学硕士学位论文, 2014. QU Fei. The existence of stationary patterns for a tritrophic food chain model with diffusion[D]. Lanzhou: Masters Degree Thesis of Northwest Normal University, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133