%0 Journal Article %T 一类三种群食物链模型中交错扩散引起的Turing不稳定<br>Turing instability induced by cross-diffusion in a three-species food chain model %A 张道祥 %A 赵李鲜 %A 胡伟< %A br> %A ZHANG Dao-xiang %A ZHAO Li-xian %A HU Wei %J 山东大学学报(理学版) %D 2017 %R 10.6040/j.issn.1671-9352.0.2016.286 %X 摘要: 研究了一类三种群食物链模型的强耦合交错扩散系统。 首先通过构造Lyapunov函数证明唯一的正平衡点在ODE系统下是全局渐近稳定的, 当交错扩散系数均为零时, 唯一的正平衡点仍是全局渐近稳定的。 当引入交错扩散时, 正平衡点则变得不稳定。 利用Routh-Hurwitz准则和Descartes符号法则证明了大的交错扩散系数(k21或k32足够大时)可以导致平衡点由原来的稳定变得不稳定。 最后利用数学软件Matlab 对我们的结果进行数值模拟, 得到了不同类型的Turing斑图, 包括六边形、条状以及二者共存的斑图。<br>Abstract: This paper considers a strong coupled cross-diffusion system about a three-species food chain model. We first prove that the unique positive equilibrium solution is globally linearly stable for the ODE system and remains globally linearly stable when the reaction-diffusion system without cross-diffusion by constructing Lyapunov functions. Then we use the Routh-Hurwitz criterion and Descartes' rule to illustrate that the unique positive equilibrium solution becomes linearly unstable only when the cross-diffusion plays a role in this reaction-diffusion system. Finally, numerical simulations are performed to test our theoretical results by means of Matlab. We can obtain different types of patterns including spotted, striped and mixture patterns %K 食物链模型 %K Turing不稳定 %K Turing斑图 %K 交错扩散 %K < %K br> %K cross-diffusion %K turing instability %K turing pattern %K food chain model %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2016.286