|
- 2018
带有非局部积分边值的Hadamard型分数阶微分包含解的终结点型存在性定理
|
Abstract:
摘要: 利用多值映射的不动点定理, 给出了以下带有非局部积分边值Hadamard型分数阶微分包含解的终结点型存在性定理:{Dαx(t)∈F(t,x(t)), 1 e, 1<α≤2, x(1)=x(0), A/( Γ(γ))∫ η 1( logη/s) γ-1(x(s))/s ds+Bx( e)=c, γ>0, 1<η< e, 其中 Dα表示Hadamard型分数阶导数, F:[1, e]×R→P(R)是多值映射, A,B,c是常数。 所得结果将已有的单值结果推广到多值情形。
Abstract: Based on fixed-point theorem for multi-value maps, the endpoint theorem on the existence of solutions for the following Hadamard fractional order differential inclusions with nonlocal integral boundary value problems is given:{Dαx(t)∈F(t,x(t)), 1 e, 1<α≤2, x(1)=x(0), A/( Γ(γ))∫ η 1( logη/s) γ-1(x(s))/s ds+Bx( e)=c, γ>0, 1<η< e, where Dα is Hadamard type fractional derivative, F:[1, e]×R→P(R)is a multi-valued map, A,B,c are constants. The aim of this paper is to extend known single value result to multi-valued framework
[1] | AHMAD B, NTOUYAS S K, TARIBOON J. A study of mixed Hadamard and Riemann-Liouville fractional integro-differential inclusions via endpoint theory[J]. Applied Mathematics Letters, 2016, 52(1):9-14. |
[2] | NTOUYAS S K, TARIBOON J. Fractinal integral problems for Hadamard-Caputo fractional Langevin differential inclusions[J]. Applied Mathematics and Computation, 2016, 51(1):13-33. |
[3] | AHMAD B, AGARWAL R P, ALlSAEDI A. Fractional differential equations and inclusions with semiperiodic and three-point boundary conditions[J]. Boundary Value Problems, 2016, 2016(1):1-20. |
[4] | NTOUYAS S K, ETEMAD S. On the existence of solutions for fractional differential inclusions with sum and integral boundary conditions[J]. Applied Mathematics and Computation, 2015, 266(3):235-243. |
[5] | PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999. |
[6] | DEIMLING K. Multi-valued differential equations[M]. Berlin: Walter de Gruyter, 1992. |
[7] | AMINI-HARANDI A. Endpoints of set-valued contractions in metric space[J]. Nonlinear Analysis, 2010, 72(1):132-134. |
[8] | ALlSAEDI A, NTOUYAS S K, AHMAD B, et al. Nonlinear Hadamard fractional differential equations with Hadamard type nonlocal non-conserved conditions[J]. Advances in Difference Equations, 2015, 2015(1):1-13. |
[9] | HADAMARD J. Essai sur lerude des fonctions donnees par leur developmenr de Taylor[J]. Journal De Mathematiques Pures Et Appliquees, 1892, 8(1):101-186. |
[10] | KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. North-Holland: Elsevier Science Ltd, 2006. |
[11] | SAMKO S G, KILBAS A A, MARICHEV O I. Fractional integral and derivatives: theory and applications[M]. Switzerland: Gordon and Breach Science Publishers, 1993. |
[12] | YANG Dandan. Existence of solutions for fractional differential inclusions with boundary conditions[J]. Electronic Journal of Differential Equations, 2010, 2010(92):1-10. |
[13] | AGARWAL R P, NTOUYAS S K, AHMAD B, et al. Hadamard-type fractional functional differential equations and inclusions with retarded and advanced arguments[J]. Advances in Difference Equations, 2016, 2016(1):1-15. |
[14] | WANG Jinrong, IBRAHIM A G, FECKAN M. Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces[J]. Applied Mathematics and Computation, 2015, 257(1):103-118. |
[15] | 杨丹丹. 带有积分边值条件的分数阶微分包含解的存在性[J].浙江大学学报(理学版),2015,42(6):688-692. YANG Dandan. Existence of solutions for fractional differential inclusions with integral boundary conditions[J]. Journal of Zhejiang university(Natural Science), 2015, 42(6):688-692. |
[16] | KILBAS A A. Hadamard-type fractional calculus[J]. Journal of Korean Mathematical Society, 2001, 38(6):1191-1204. |
[17] | AGARWAL R P, BALEANU D, HEDAYATI V, et al. Two fractional derivative inclusion problems via integral boundary condition[J]. Applied Mathematics and Computation, 2015, 257(2):205-212. |