%0 Journal Article %T 带有非局部积分边值的Hadamard型分数阶微分包含解的终结点型存在性定理<br>Endpoint theorem on existence of solutions for Hadamard-type fractional differential inclusions with nonlocal integral boundary value conditions %A 杨丹丹 %J 山东大学学报(理学版) %D 2018 %R 10.6040/j.issn.1671-9352.0.2017.222 %X 摘要: 利用多值映射的不动点定理, 给出了以下带有非局部积分边值Hadamard型分数阶微分包含解的终结点型存在性定理:{Dαx(t)∈F(t,x(t)), 1 e, 1<α≤2, x(1)=x(0), A/( Γ(γ))∫ η 1( logη/s) γ-1(x(s))/s ds+Bx( e)=c, γ>0, 1<η< e, 其中 Dα表示Hadamard型分数阶导数, F:[1, e]×R→P(R)是多值映射, A,B,c是常数。 所得结果将已有的单值结果推广到多值情形。<br>Abstract: Based on fixed-point theorem for multi-value maps, the endpoint theorem on the existence of solutions for the following Hadamard fractional order differential inclusions with nonlocal integral boundary value problems is given:{Dαx(t)∈F(t,x(t)), 1 e, 1<α≤2, x(1)=x(0), A/( Γ(γ))∫ η 1( logη/s) γ-1(x(s))/s ds+Bx( e)=c, γ>0, 1<η< e, where Dα is Hadamard type fractional derivative, F:[1, e]×R→P(R)is a multi-valued map, A,B,c are constants. The aim of this paper is to extend known single value result to multi-valued framework %K 多值映射 %K 边值条件 %K Hadamard型分数阶微分包含 %K 终结点定理 %K < %K br> %K Hadamard-type fractional differential inclusions %K endpoint theorem %K multi-valued maps %K boundary value conditions %U http://lxbwk.njournal.sdu.edu.cn/CN/10.6040/j.issn.1671-9352.0.2017.222