|
- 2018
1-丁基-3-甲基咪唑硫酸氢盐与乙酸钠混合电解液中三价铬电镀的研究
|
Abstract:
摘要 本文研究了Cr3+在1-丁基-3-甲基咪唑硫酸氢盐([BMIM]HSO4)电解液中的电沉积反应以及添加剂NaOAc对电镀铬的影响. 含Cr3+电解液的循环伏安结果表明,Cr(III)还原为Cr(II)的峰电位是-1.5 V (vs. Pt), 峰电位和峰电流均满足Rendle-Sevcik扩散方程,由该方程计算得到Cr3+的扩散系数为1.6 × 10-8 cm2·s-1. 铬镀层的X射线衍射和扫描电子显微镜表征结果表明镀层由纳米球状的单质铬颗粒聚集而成,其平均粒径为0.87 μm. 在电解液中添加NaOAc后,Cr3+的还原峰电位正移了约0.25 V. 同时EDS结果表明,在NaOAc的作用下镀层中Cr/O摩尔比由4.48增加至6.28,这说明OAc-有利于单质铬的电沉积. 当电解液中NaOAc-[BMIM]HSO4-CrCl3-H2O的摩尔比为0.075:1:0.5:6时,所得的镀层最厚(63 μm)与电流效率最高(33.5%)
[1] | Eugenio S, Rangel C M, Vilar R, et al. Electrochemical aspects of black chromium electrodeposition from 1-butyl-3- |
[2] | Luo W(罗维),) Niu D F(钮东方), Du R B(杜荣斌), et al. Electrochemical deposition of Cr from Cr3+ in the mixed electrolyte of [BMIM]OAc/H2O[J]. Journal of Electrochemistry(电化学), 2017, 23(3): 332-339. |
[3] | Saravanan G, Mohan S. Corrosion behavior of Cr electrodeposited from Cr(VI) and Cr(III)-baths using direct (DCD) and pulse electrodeposition (PED) techniques[J]. Corrosion Science, 2009, 51(1): 197-202. |
[4] | Armand M, Endres F, MacFarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J]. Nature Materials, 2009, 8(8): 621-629. |
[5] | Lu C E, Pu N W, Hou K H, et al. The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium[J]. Applied Surface Science, 2013, 282: 544-551. |
[6] | de Lima-Neto P, da Silva G P, Correia A N. A comparative study of the physicochemical and electrochemical properties of Cr and Ni-W-P amorphous electrocoatings[J]. Electrochimica Acta, 2006, 51(23): 4928-4933. |
[7] | Zeng Z X, Sun Y L, Zhang J Y. The electrochemical reduction mechanism of trivalent chromium in the presence of formic acid[J]. Electrochemistry Communications, 2009, 11(2): 331-334. |
[8] | Abbott A P, Ryder K S, Konig U. Electrofinishing of metals using eutectic based ionic liquids[J]. Transactions of The Institute of Metal Finishing, 2008, 86(4): 196-204. |
[9] | methylimidazolium tetrafluoroborate ionic liquid[J]. Electrochimica Acta, 2011, 56(28): 10347-10352. |
[10] | Bakkar A, Neubert V. A new method for practical electrodeposition of aluminium from ionic liquids[J]. Electrochemistry Communications, 2015, 51: 113-116. |
[11] | Nicholson R S, Shain I. Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems[J]. Analytical Chemistry, 1964, 36(4):706-723. |
[12] | Gunawardena G, Hills G, Montenegro I, et al. Electrochemical nucleation: Part I. General considerations[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138(2): 225-239. |
[13] | Wang Y X(王友先), Jiang H Y(蒋汉瀛),Wen Q L(文清良). Study on stability of trivalent chromium plating solution contaianing formate[J]. Electroplating & Finishing(电镀与涂饰), 1995, 14(2): 1-6. |
[14] | Chen Y(陈亚). Modern practical electroplating technology[J]. National Defend Industry Press(国防工业出版社), 2003. |
[15] | Protsenko V, Danilov F. Kinetics and mechanism of chromium electrodeposition from formate and oxalate solutions of Cr(III) compounds[J]. Electrochimica Acta, 2009, 54(24): 5666-5672. |
[16] | Abbott A P, McKenzie K J. Application of ionic liquids to the electrodeposition of metals[J]. Physical Chemistry Chemical Physics, 2006, 8(37): 4265-4279. |
[17] | Endres F, Bukowski M, Hempelmann R, et al. Electrodeposition of nanocrystalline metals and alloys from ionic liquids[J]. Angewandte Chemie-International Edition, 2003, 42(29): 3428-3430. |
[18] | Baral A, Engelken R. Modeling, optimization, and comparative analysis of trivalent chromium electrodeposition from aqueous glycine and formic acid baths[J]. Journal of The Electrochemical Society, 2005, 152(7): C504-C512. |
[19] | Song Y B, Chin D T. Current efficiency and polarization behavior of trivalent chromium electrodeposition process[J]. Electrochimica Acta, 2002, 48(4): 349-356. |
[20] | Abbott A P, Frisch G, Ryder K S. Electroplating using ionic liquids[M]. Annual Review of Materials Research, 2013, 43: 335-358. |
[21] | Cui Y(崔焱), Hua Y X(华一新). Mechanism of Cr(Ⅲ) electrodeposition in ChCl/CrC3.6H2O system[J]. Nonferrous Metals(有色金属), 2011, 63(1): 92-96. |
[22] | Eugenio S, Rangel C M, Vilar R, et al. Electrodeposition of black chromium spectrally selective coatings from a Cr(III)-ionic liquid solution[J]. Thin Solid Films, 2011, 519(6): 1845-1850. |
[23] | Surviliene S, Eugenio S, Vilar R. Chromium electrodeposition from [BMIm][BF4] ionic liquid[J]. Journal of Applied Electrochemistry, 2011, 41(1): 107-114. |
[24] | He X K, Li C, Zhu Q Y, et al. Electrochemical mechanism of Cr(III) reduction for preparing crystalline chromium coatings based on 1-butyl-3-methylimidazolium hydrogen sulfate ionic liquid[J]. RSC Advances, 2014, 4(109): 64174-64182. |
[25] | Kim K S, Shin B K, Lee H. Physical and electrochemical properties of 1-butyl-3-methylimidazolium bromide, 1- |
[26] | butyl-3-methylimidazolium iodide, and 1-butyl-3-methyl- |
[27] | imidazolium tetrafluoroborate[J]. Korean Journal of Che- |
[28] | mical Engineering, 2004, 21(5): 1010-1014. |
[29] | Yang Y F(杨余芳), Gong Z Q(龚竹青), Li Q G(李强国). Electrochemical deposition of trivalent chromium[J]. Journal of Central South University of Technology (Science and Technology) (中南大学学报(自然科学版)), 2008, 39(1): 112-117. |