全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A frictionless contact problem for viscoelastic materials

DOI: 10.1155/s1110757x02000219

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider a mathematical model which describes the contact between a deformable body and an obstacle, the so-called foundation. The body is assumed to have a viscoelastic behavior that we model with the Kelvin-Voigt constitutive law. The contact is frictionless and is modeled with the well-known Signorini condition in a form with a zero gap function. We present two alternative yet equivalent weak formulations of the problem and establish existence and uniqueness results for both formulations. The proofs are based on a general result on evolution equations with maximal monotone operators. We then study a semi-discrete numerical scheme for the problem, in terms of displacements. The numerical scheme has a unique solution. We show the convergence of the scheme under the basic solution regularity. Under appropriate regularity assumptions on the solution, we also provide optimal order error estimates.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133