全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

电羧化:一种固定CO2制备有机羧酸的有效途径
Electrocarboxylation: an Effective Process for Fixation of CO2 into Organic Carboxylic Acids

DOI: 10.13208/j.electrochem.161041

Keywords: 电羧化,二氧化碳,有机电合成,
electrocarboxylation
,carbon dioxide,organic electrosynthesis.

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 温室气体CO2的绿色高效转化利用是当前的研究热点. 其中,有机物的电化学羧化反应是CO2利用的有效途径. 温和条件(常温常压)下,有机底物电还原生成的碳负离子可以捕获体系中的CO2,进而合成具有高附加值的有机羧酸类化合物. 本文重点介绍了本课题组在电羧化反应方面的研究进展,包括各类电活性基团物质的电羧化反应以及不对称电羧化反应.
Conversion and utilization of greenhouse gas carbon dioxide (CO2) have become more and more significant to the sustainable development of the global economy. Among them, electrocarboxylation of organic substrates is an effective process. Under mild conditions such as ambient temperature and pressure, carbocations generated by electroreduction of organic substrates can react with CO2 into corresponding carboxylic acids. This paper introduces the recent progress of our group in electrochemical carboxylation, including electrocarboxylation of varies active organic substrates and asymmetric electrocarboxylation

References

[1]  Wang H, Du Y F, Lin M Y, et al. Electrochemical reduction and carboxylation of ethyl cinnamate in MeCN[J]. Chinese Journal of Chemistry, 2008, 26 (9): 1745-1748.
[2]  Feroci M, Chiarotto I, Orsini M, et al. Carbon dioxide as carbon source: Activation via electrogenerated O2- in ionic liquids[J]. Electrochimica Acta, 2011, 56 (16): 5823-5827.
[3]  Niu D F, Xiao L P, Zhang A J, et al. Electrocatalytic carboxylation of aliphatic halides at silver cathode in acetonitrile[J]. Tetrahedron, 2008, 64 (46): 10517-10520.
[4]  Zhang J B, Niu D F, Lan Y C, et al. Electrocatalytic Carboxylation of Arylic Bromides at Silver Cathode in the Presence of Carbon Dioxide[J]. Synthetic Communications, 2011, 41 (24): 3720-3727.
[5]  Lu Q, Rosen J, Jiao F. Nanostructured Metallic Electrocatalysts for Carbon Dioxide Reduction[J]. ChemCatChem, 2015, 7 (1): 38-47.
[6]  Wang H (王欢), Lu J X (陆嘉星). Brief introduction of organic electrochemistry[J]. Journal of Electrochemistry (电化学), 2011, 17 (4): 366-372.
[7]  Wang W H, Himeda Y, Muckerman J T, et al. CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction[J]. Chemical Reviews, 2015, 115 (23): 12936-12973.
[8]  Wu L X, Wang H, Xiao Y, et al. Synthesis of dialkyl carbonates from CO2 and alcohols via electrogenerated N-heterocyclic carbenes[J]. Electrochemistry Communications, 2012, 25 (0): 116-118.
[9]  Chen B L, Zhu H W, Xiao Y, et al. Asymmetric electrocarboxylation of 1-phenylethyl chloride catalyzed by electrogenerated chiral [CoI(salen)]? complex[J]. Electrochemistry Communications, 2014, 42 (0): 55-59.
[10]  Wang H, Zhang K, Liu Y Z, et al. Electrochemical carboxylation of cinnamate esters in MeCN[J]. Tetrahedron, 2008, 64 (2): 314-318.
[11]  Niu D F, Xu C T, Zhang L, et al. Activation of carbon dioxide by electrocatalysis for synthesis of ethyl carbanilate[J]. Chinese Journal of Catalysis, 2007, 28 (10): 880-884.
[12]  Wang H, Du Y F, Lin M Y, et al. Electrochemical reduction and carboxylation of ethyl cinnamate in MeCN[J]. Chinese Journal of Chemistry, 2008, 26 (9): 1745-1748.
[13]  Lin M Y, Wang H, Zhang A J, et al. Electrocarboxylation of benzalacetophenone: Synthesis of 2,4-diphenyl-4-oxobutanoic acid[J]. Chinese Journal of Organic Chemistry, 2008, 28 (9): 1572-1577.
[14]  Zhang J B, Niu D F, Lan Y C, et al. Electrocatalytic Carboxylation of Arylic Bromides at Silver Cathode in the Presence of Carbon Dioxide[J]. Synthetic Communications, 2011, 41 (24): 3720-3727.
[15]  Zhang K, Wang H, Wu L X, et al. Efficient Electrocarboxylation of p-Methylpropiophenone in the Presence of Carbon Dioxide[J]. Chinese Journal of Chemistry, 2010, 28 (4): 509-513.
[16]  Wang H M, Sui G J, Wu D, et al. Selective electrocarboxylation of bromostyrene at silver cathode in DMF[J]. Tetrahedron, 2016, 72 (7): 968-972.
[17]  Zhao S F, Wang H, Lan Y C, et al. Influences of the operative parameters and the nature of the substrate on the electrocarboxylation of benzophenones[J]. Journal of Electroanalytical Chemistry, 2012, 664: 105-110.
[18]  Wang H, Lin M Y, Fang H J, et al. Electrochemical dicarboxylation of styrene: Synthesis of 2-phenylsuccinic acid[J]. Chinese Journal of Chemistry, 2007, 25 (7): 913-916.
[19]  Niu D F, Zhang L, Xiao L P, et al. Nickel-catalyzed coupling of CO2 and amines: improved synthesis of carbamates[J]. Applied Organometallic Chemistry, 2007, 21 (11): 941-944.
[20]  Wang H, Xu X M, Lan Y C, et al. Electrocarboxylation of haloacetophenones at silver electrode[J]. Tetrahedron, 2014, 70 (6): 1140-1143.
[21]  Zhao S F, Wu L X, Wang H, et al. A unique proton coupled electron transfer pathway for electrochemical reduction of acetophenone in the ionic liquid [BMIM][BF4] under a carbon dioxide atmosphere[J]. Green Chemistry, 2011, 13 (12): 3461-3468.
[22]  Lan Y C, Wang H, Wu L X, et al. Electroreduction of dibromobenzenes on silver electrode in the presence of CO2[J]. Journal of Electroanalytical Chemistry, 2012, 664: 33-38.
[23]  Wang H, Zhang K, Chen B L, et al. Study on Electrocarboxylation of [(4-Methoxy-Benzylidene)-Amino] - Acetic Acid Ester[J]. International Journal of Electrochemical Science, 2011, 6 (5): 1720-1729.
[24]  Yang H P, Wu L X, Wang H, et al. Cathode made of compacted silver nanoparticles for electrocatalytic carboxylation of 1-phenethyl bromide with CO2[J]. Chinese Journal of Catalysis, 2016, 37 (7): 994-998.
[25]  Zhang K, Wang H, Zhao S F, et al. Asymmetric electrochemical carboxylation of prochiral acetophenone: An efficient route to optically active atrolactic acid via selective fixation of carbon dioxide[J]. Journal of Electroanalytical Chemistry, 2009, 630 (1-2): 35-41.
[26]  Wang H, He L, Sui G J, et al. Electrocatalytic reduction of PhCH2Br on a Ag-Y zeolite modified electrode[J]. RSC Advances, 2015, 5 (53): 42663-42665.
[27]  Zhao S F, Zhu M X, Zhang K, et al. Alkaloid induced asymmetric electrocarboxylation of 4-methylpropiophenone[J]. Tetrahedron Letters, 2011, 52 (21): 2702-2705.
[28]  Sui G J, Sun Q L, Wu D, et al. Electrocatalytic reduction of PhCH2Cl on Ag-ZSM-5 zeolite modified electrode[J]. RSC Advances, 2016, 6 (68): 63493-63496.
[29]  Chen B L, Tu Z Y, Zhu H W, et al. CO2 as a C1-organic building block: Enantioselective electrocarboxylation of aromatic ketones with CO2catalyzed by cinchona alkaloids under mild conditions[J]. Electrochimica Acta, 2014, 116 (0): 475-483.
[30]  Chen B L, Zhu H W, Xiao Y, et al. Asymmetric electrocarboxylation of 1-phenylethyl chloride catalyzed by electrogenerated chiral [CoI(salen)]? complex[J]. Electrochemistry Communications, 2014, 42 (0): 55-59.
[31]  Yang H P, Yue Y N, Sun Q L, et al. Entrapment of a chiral cobalt complex within silver: a novel heterogeneous catalyst for asymmetric carboxylation of benzyl bromides with CO2[J]. Chemical Communications, 2015, 51 (61): 12216 - 12219.
[32]  Zhang L, Niu D F, Zhang K, et al. Electrochemical activation of CO2 in ionic liquid ( BMIMBF4): synthesis of organic carbonates under mild conditions[J]. Green Chemistry, 2008, 10 (2): 202-206.
[33]  Zhang K, Xiao Y J, Lan Y C, et al. Electrochemical reduction of aliphatic conjugated dienes in the presence of carbon dioxide[J]. Electrochemistry Communications, 2010, 12 (12): 1698-1702.
[34]  Wang H, Wu L X, Zhao J Q, et al. Synthesis of cyclic carbonates from CO2 and diols via electrogenerated cyanomethyl anion[J]. Greenhouse Gases: Science and Technology, 2012, 2 (1): 59-65.
[35]  Wang H, Lin M Y, Zhang K, et al. Electrochemical reduction of cinnamonitrile in the presence of carbon dioxide: Synthesis of cyano- and phenyl-substituted propionic acids[J]. Australian Journal of Chemistry, 2008, 61 (7): 526-530.
[36]  Niu D F, Xu C T, Luo Y W, et al. Electrochemical activation of CO2 for the synthesis of ethyl carbanilate under mild conditions[J]. Chemical Research in Chinese University, 2007, 23 (6): 708-711.
[37]  Zhang K, Xiao Y J, Lan Y C, et al. Electrochemical reduction of aliphatic conjugated dienes in the presence of carbon dioxide[J]. Electrochemistry Communications, 2010, 12 (12): 1698-1702.
[38]  Wang H, Zhang K, Liu Y Z, et al. Electrochemical carboxylation of cinnamate esters in MeCN[J]. Tetrahedron, 2008, 64 (2): 314-318.
[39]  Chen B L, Tu Z Y, Zhu H W, et al. CO2 as a C1-organic building block: Enantioselective electrocarboxylation of aromatic ketones with CO2catalyzed by cinchona alkaloids under mild conditions[J]. Electrochimica Acta, 2014, 116 (0): 475-483.
[40]  Yang H P, Yue Y N, Sun Q L, et al. Entrapment of a chiral cobalt complex within silver: a novel heterogeneous catalyst for asymmetric carboxylation of benzyl bromides with CO2[J]. Chemical Communications, 2015, 51 (61): 12216 - 12219.
[41]  Wang H, Xu X M, Lan Y C, et al. Electrocarboxylation of haloacetophenones at silver electrode[J]. Tetrahedron, 2014, 70 (6): 1140-1143.
[42]  Wang H (王欢), Zhu M X (朱美侠), Wu L X (吴腊霞), et al. Electrosynthesis of glycerol carbonate from CO2 and glycerol[J]. Journal of Electrochemistry (电化学), 2013, 19 (4): 328-331.
[43]  Lan Y C, Wang H, Wu L X, et al. Electroreduction of dibromobenzenes on silver electrode in the presence of CO2[J]. Journal of Electroanalytical Chemistry, 2012, 664: 33-38.
[44]  Wu L X, Yang H P, Wang H, et al. Electrosynthesis of cyclic carbonates from CO2 and epoxides on a reusable copper nanoparticle cathode[J]. RSC Advances, 2015, 5 (30): 23189-23192.
[45]  Lin M Y, Wang H, Zhang A J, et al. Electrocarboxylation of benzalacetophenone: Synthesis of 2,4-diphenyl-4-oxobutanoic acid[J]. Chinese Journal of Organic Chemistry, 2008, 28 (9): 1572-1577.
[46]  Zhao S F, Wang H, Lan Y C, et al. Influences of the operative parameters and the nature of the substrate on the electrocarboxylation of benzophenones[J]. Journal of Electroanalytical Chemistry, 2012, 664: 105-110.
[47]  Zhao S F, Wu L X, Wang H, et al. A unique proton coupled electron transfer pathway for electrochemical reduction of acetophenone in the ionic liquid [BMIM][BF4] under a carbon dioxide atmosphere[J]. Green Chemistry, 2011, 13 (12): 3461-3468.
[48]  Wang H, Zhang K, Chen B L, et al. Study on Electrocarboxylation of [(4-Methoxy-Benzylidene)-Amino] - Acetic Acid Ester[J]. International Journal of Electrochemical Science, 2011, 6 (5): 1720-1729.
[49]  Casadei M A, Feroci M, Inesi A, et al. The reaction of 1,2-amino alcohols with carbon dioxide in the presence of 2-pyrrolidone electrogenerated base. New synthesis of chiral oxazolidin-2-ones[J]. The Journal of Organic Chemistry, 2000, 65 (15): 4759-4761.
[50]  Wang H M, Sui G J, Wu D, et al. Selective electrocarboxylation of bromostyrene at silver cathode in DMF[J]. Tetrahedron, 2016, 72 (7): 968-972.
[51]  Xiao Y, Chen B L, Yang H P, et al. Electrosynthesis of enantiomerically pure cyclic carbonates from CO2 and chiral epoxides[J]. Electrochemistry Communications, 2014, 43 (0): 71-74.
[52]  Tascedda P, Dunach E. Electrosynthesis of cyclic carbamates from aziridines and carbon dioxide[J]. Chemical Communications, 2000, (6): 449-450.
[53]  Wang H, Zhang G R, Liu Y Z, et al. Electrocarboxylation of activated olefins in ionic liquid BMIMBF4[J]. Electrochemistry Communications, 2007, 9 (9): 2235-2239.
[54]  Feroci M, Chiarotto I, Orsini M, et al. Carbon dioxide as carbon source: Activation via electrogenerated O2- in ionic liquids[J]. Electrochimica Acta, 2011, 56 (16): 5823-5827.
[55]  Zhang L, Xiao L P, Niu D F, et al. Electrocarboxylation of acetophenone to 2-hydroxy-2phenylpropionic acid in the presence of CO2[J]. Chinese Journal of Chemistry, 2008, 26 (1): 35-38.
[56]  Zhao S F, Zhu M X, Zhang K, et al. Alkaloid induced asymmetric electrocarboxylation of 4-methylpropiophenone[J]. Tetrahedron Letters, 2011, 52 (21): 2702-2705.
[57]  Yang H P, Wu L X, Wang H, et al. Cathode made of compacted silver nanoparticles for electrocatalytic carboxylation of 1-phenethyl bromide with CO2[J]. Chinese Journal of Catalysis, 2016, 37 (7): 994-998.
[58]  Wang H, He L, Sui G J, et al. Electrocatalytic reduction of PhCH2Br on a Ag-Y zeolite modified electrode[J]. RSC Advances, 2015, 5 (53): 42663-42665.
[59]  Sui G J, Sun Q L, Wu D, et al. Electrocatalytic reduction of PhCH2Cl on Ag-ZSM-5 zeolite modified electrode[J]. RSC Advances, 2016, 6 (68): 63493-63496.
[60]  Casadei M A, Feroci M, Inesi A, et al. The reaction of 1,2-amino alcohols with carbon dioxide in the presence of 2-pyrrolidone electrogenerated base. New synthesis of chiral oxazolidin-2-ones[J]. The Journal of Organic Chemistry, 2000, 65 (15): 4759-4761.
[61]  Niu D F, Xiao L P, Zhang A J, et al. Electrocatalytic carboxylation of aliphatic halides at silver cathode in acetonitrile[J]. Tetrahedron, 2008, 64 (46): 10517-10520.
[62]  Zhang K, Wu L X, Hu L L, et al. Electrosynthesis of 2-Hydroxy-2-(4-methoxy-phenyl)-propionic Acid Methyl Ester via Electrochemical Fixation of Carbon Dioxide[J]. Chemical Journal of Chinese Universities, 2010, 31 (7): 1410-1415.
[63]  Wang H, Lin M Y, Fang H J, et al. Electrochemical dicarboxylation of styrene: Synthesis of 2-phenylsuccinic acid[J]. Chinese Journal of Chemistry, 2007, 25 (7): 913-916.
[64]  Wang H, Lin M Y, Zhang K, et al. Electrochemical reduction of cinnamonitrile in the presence of carbon dioxide: Synthesis of cyano- and phenyl-substituted propionic acids[J]. Australian Journal of Chemistry, 2008, 61 (7): 526-530.
[65]  Wang H, Zhang G R, Liu Y Z, et al. Electrocarboxylation of activated olefins in ionic liquid BMIMBF4[J]. Electrochemistry Communications, 2007, 9 (9): 2235-2239.
[66]  Zhang L, Xiao L P, Niu D F, et al. Electrocarboxylation of acetophenone to 2-hydroxy-2phenylpropionic acid in the presence of CO2[J]. Chinese Journal of Chemistry, 2008, 26 (1): 35-38.
[67]  Zhang K, Wu L X, Hu L L, et al. Electrosynthesis of 2-Hydroxy-2-(4-methoxy-phenyl)-propionic Acid Methyl Ester via Electrochemical Fixation of Carbon Dioxide[J]. Chemical Journal of Chinese Universities, 2010, 31 (7): 1410-1415.
[68]  Zhang K, Wang H, Wu L X, et al. Efficient Electrocarboxylation of p-Methylpropiophenone in the Presence of Carbon Dioxide[J]. Chinese Journal of Chemistry, 2010, 28 (4): 509-513.
[69]  Zhang K, Wang H, Zhao S F, et al. Asymmetric electrochemical carboxylation of prochiral acetophenone: An efficient route to optically active atrolactic acid via selective fixation of carbon dioxide[J]. Journal of Electroanalytical Chemistry, 2009, 630 (1-2): 35-41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133