|
- 2017
Pr-PVP掺杂Ti/PbO2电极制备及其在有机物降解中的应用
|
Abstract:
摘要 在Ti基体上,采用电沉积法制备了镨和聚乙烯吡咯烷酮(PVP)掺杂的Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 电极. SEM显示Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 电极表面颗粒细化,镀层结构更加致密和均匀,XRD 测试表明掺杂使可以使电极的表面颗粒变小.循环伏安 (CV)分析表明共掺杂改性后的电极电催化活性明显提高.强化寿命测试显示Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 电极稳定性更好,使用寿命更长. 将所制备的电极应用于亚甲基蓝(MB)模拟染料废水的降解测试,与常规的Ti/PbO2 电极相比,Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 电极对亚甲基蓝具有更好的脱色率和 COD 除去率. 降解120min 后,对30 mg·L -1 亚甲基蓝的去除率分别可达到99%,对COD去除率为87.9%.
The titanium (Ti) based lead oxide (PbO2) electrodes doped with praseodymium oxide (Pr2O3) and polyvinylpyrrolidone (PVP) were prepared by electrodeposition. The surface morphologies and structures of the as-prepared thin films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) technique, respectively. The results showed that the denser and more uniform coatings with smaller particles and larger surfaces were obtained by doping, which modified the micro-structure of the Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrode. Cyclic voltammetry (CV) was also used to study the electrocatalytic activity of electrodes and higher oxidation capacity was obtained with the Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrode. The accelerated life of Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrode was considerably longer than that of undoped anode. Compared with conventional Ti/PbO2 electrodes, the Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 electrodes exhibited higher decolorization rate and removal rate of COD, reaching 99% and 87.9%, respectively, after the electrolysis time of 120 min during the process of degrading simulative dyeing wastewater of methylene blue. The good electrocatalytic performance of Ti/SnO2-Sb2O3/Pr2O3-PVP-PbO2 makes it a promising anode for treatment of organic pollutants in aqueous solutions
[1] | Tong S P, Ma C A, Feng H. A novel PbO2 electrode preparation and its application in organic degradation [J]. Electrochimica Acta, 2008, 53:3002-3006. |
[2] | Limin Chang, Ying Zhou, Xiaoyue Duan, et a1. Preparation and characterization of carbon nanotube and Bi co-doped PbO2 electrode, Journal of the Taiwan Institute of Chemical Engineers ,2014,45:1338-1346. |
[3] | C.A. Martinez-Huitle, E. Brillas, Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review, Appl.Catal. B-Environ. 200,987:105-145. |
[4] | Zhou D L, Gao L J. Effect of electrochemical preparation methods on structure and properties of PbO2 anodic layer[J]. Electrochimica Acta, 2007, 53(4), 2060-2064. |
[5] | Liu H T, Zhang X H, Zhou Y B, et al. The anodic films on lead alloys containing rare-earth elements as positive grids in lead acid battery[J]. Materials Letters, 2003, 57(29): 4597-4600. |
[6] | Liu Y, Liu H L. Comparative studies on the electrocatalytic properties of modified PbO2 anodes[J]. Electrochimica Acta, 2008, 53 (16): 5077-5083. |
[7] | Wang Y, Shen Z Y, Chen X C.Effects of experimental parameters on 2,4-dichlorphenol degradation over Er-chitosan-PbO2 electrode[J]. Journal of Hazardous Materials, 2010, 178(1-3): 867-874. |
[8] | Kong J T, Shi S Y, Kong L C, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides [J]. Electrochimica Acta, 2007, 53:2048-2054. |
[9] | Yingwu Yao, Haishu Dong, Limiao Jiao, et al. Preparation and Electrocatalytic Property of PbO2-CeO2 Nanocomposite Electrodes by Pulse Reverse Electrodeposition Methods, Journal of The Electrochemical Society, 2016,163 (5): D179-D184. |
[10] | Feng Y J, Cui Y H, Wang J J. Preparation and characterization of Dy doped Ti-base SnO2/Sb electrocatalytic electrod [J]. Chinese Journal of Inorganic Chemistry, 2005, 21(6): 836-841. |
[11] | Liu Y, Liu H, Ma J, et al.Investigation on electrochemical properties of cerium doped lead dioxide anode and application for elimination of nitrophenol. Electrochim Acta 2011,56:1352-1360. |
[12] | Kuramitz H, Nakate Y, Kawasaki M, et al. Application to the removal of bisphenol A using a carbon fiber electrode [J]. Chemosphere, 2001, 45:37-43. |
[13] | Qi H L, Zhang C X. Pre-oxidative amperometric glucose biosensor incorporated with carbon nanotube and PbO2 [J]. Journal of Electrochemistry, 2006, 12 (3): 319-323. |
[14] | Li M, Feng C P, Hu W W, et al. Electrochemical degradation of phenol using electrodes of Ti-RuO2-Pt and Ti-IrO2-Pt [J]. Journal of Hazardous Materials, 2008, 24(3): 285-290. |
[15] | Borrás C, Laredo T, Mostany J, et al. Study of the oxidation of solutions of p-chlorophenol and p-nitrophenol on Bi-doped PbO2 electrodes by UV-Vis and FTIR in situ spectroscopy [J], Electrochimica Acta, 2004, 49(4): 641-648. |
[16] | Qianchi Ma, Lei Liu, Wei Cui, et al. Electrochemical degradation of perfluorooctanoic acid (PFOA) by Yb-doped Ti/SnO2-Sb/PbO2 anodes and determination of the optimal conditions, RSC Adv., 2015, 5: 84856-84864. |
[17] | Rodgers J D, Jedral W, Bunce N J. Electrochemical oxidationof chlorinated phenols [J]. Environ Sci Technol, 1999, 33: 1453-1457. |
[18] | J. Niu, H. Lin, J. Xu, et al. Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce doped modified porous nanocrystalline PbO2 film electrode, Environ. Sci. Technol., 2012, 46(18): 10191-10198. |
[19] | Duan X, Ma F, Yuan Z, et al.Lauryl benzene sulfonic acid sodiumcarbon nanotube-modified PbO2 electrode for the degradation of 4-chlorophenol.Electrochim Acta 2012, 76:333-343. |
[20] | Casellato U, Cattarin S, Musiani M. Preparation of porous PbO2 electrodes by electrochemical deposition of composites [J]. Electrochimica Acta, 2003, 48(27) : 3991-3998. |
[21] | T .Chen, H. Huang, H.Y Ma, et al. Effects of surface morphology of nano- structured PbO2 thin films on their electrochemical properties Electrochim. Acta 2013,88: 79-85. |
[22] | Hong X, Zhang R, Tong S, et al.Preparation of Ti/PTFE-F-PbO2 electrode with a long life from the sulfamic acid bath and its application in organic degradation[J]. Chinese Journal of Chemical Engineering, 2011, 19(6): 1033-1038 |
[23] | Chahmaria N, Zerroual L, Matrakova M. Influence of Mg2+,Al2+,Co2+,Sn2+and Sb3+on the electrical performance of doped β-lead dioxide [J]. Journal of Power Sources, 2009,19(1): l44-148. |
[24] | Li X Y, Cui Y H, Feng Y J, et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes [J]. Water Research, 2005, 39: 1972-1981. |
[25] | Kong J, Shi S, Kong L, et al. Preparation and characterization of PbO2 electrodes doped with different rare earth oxides. Electrochim Acta 2007; 53:2048-2054. |
[26] | L. Gomes, R.G. Freitas, G.R.P. Malpass,et al. Pt film electrodes prepared by the Pechini method for electrochemical decolourisation of Reactive Orange, J. Appl. Electrochem 2009,39:117-121. |
[27] | Comminellis C, Pulgarin C. Anodic oxidation of phenol for wastewater treatment [J]. Journal of Applied Electrochem, 1991, 21: 703-708. |
[28] | Awad Y M, Abuzaid N S. Electrochemical oxidation of phenol using graphite anodes [J]. Sep Sci Technol, 1999, 34: 699-708. |
[29] | Lozano B C,Comninellis C h, Battisti A D. Service life of Ti/SnO2-Sb2O5 anodes [J]. J. Appl. Electrochem, 1997, 27: 970-974. |
[30] | Leonardo S A, Luís A M R, Romeu C, et al. On the performance of Fe and Fe,F dopedTi-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater[J].Chemosphere, 2007, 66(11): 2035-2043. |
[31] | Qizhou Dai, Yijing Xia, Jianmeng Chen.Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO2 electrode. Electrochimica Acta , 2016,188:871-881. |
[32] | Yingwu Yao, Manman Zhao, Chunmei Zhao, et a1. Preparation and properties of PbO2 -ZrO2 nanocomp- osite electrodes by pulse electrodeposition. Electrochimica Acta , 2014,117:453- 459. |