|
- 2016
上三角矩阵代数上的~Jordan~全可导点DOI: 10.3969/j.issn.1000-5641.2016.01.005 Keywords: Jordan~全可导点,导子,上三角矩阵代数, 三角代数Key words: Jordan all-derivable point,derivation,upper triangular matrix algebra triangular algebra Abstract: 摘要 Zhao~和~Zhu~证明了如下结果:复数域上的任意上三角矩阵代数中的每一矩阵都是~Jordan~全可导点.本文将证明:特征不为~2~的无限域上的任意上三角矩阵代数中的每一矩阵都是~Jordan~全可导点.Abstract:Zhao and Zhu proved the following result: Every matrix in upper triangular matrix algebras over the complex number field is a Jordan all-derivable point. The aim of this paper is to show that every matrix in upper triangular matrix algebras over an infinite field of characteristic not 2 is a Jordan all-derivable point.
|