%0 Journal Article %T 上三角矩阵代数上的~Jordan~全可导点 %A 孙爱慧 %J 华东师范大学学报(自然科学版) %D 2016 %R 10.3969/j.issn.1000-5641.2016.01.005 %X 摘要 Zhao~和~Zhu~证明了如下结果:复数域上的任意上三角矩阵代数中的每一矩阵都是~Jordan~全可导点.本文将证明:特征不为~2~的无限域上的任意上三角矩阵代数中的每一矩阵都是~Jordan~全可导点.</br>Abstract:Zhao and Zhu proved the following result: Every matrix in upper triangular matrix algebras over the complex number field is a Jordan all-derivable point. The aim of this paper is to show that every matrix in upper triangular matrix algebras over an infinite field of characteristic not 2 is a Jordan all-derivable point. %K Jordan~全可导点 %K 导子 %K 上三角矩阵代数 %K 三角代数< %K /br> %K Key words: Jordan all-derivable point %K derivation %K upper triangular matrix algebra triangular algebra %U http://xblk.ecnu.edu.cn/CN/abstract/abstract25262.shtml