The aqueous extracts of different parts (old leaves (OL), young leaves (YL), peels (PE) and delipidated seed residues (DS)) of three varieties of papaya are studied. Extraction conditions are optimized: an extraction time of 20 minutes, a temperature of 70°C and a plant material/water mixture of 1% give the best yield of polyphenol. The amount of polyphenols, flavonoids, saponins and proanthocyanins of each aqueous extract was investigated. Antioxidant activities are measured using two different methods (DPPH and ABTS). The delipidated seeds (DS) of V1 have the highest total phenolic content (TPC = 72.56 ± 3.16 mg GAE/g) while they have the lowest total flavonoid content (TFC = 0.22 ± 0.01). With regard to saponins, the PE of V3 is much richer in saponins (194.03 ± 15.78 mg AeE/g) than all the other extracts studied. The OL of V2 and PE of V1 contain the most proanthocyanidins with very similar values of 2.51 ± 0.03 mg CE/g and 2.53 ± 0.34 mg CE/g respectively. The study of the antioxidant activities of the extracts showed a correlation between the amount of polyphenols and IC50. DPPH OL and YL V2, which are rich in polyphenols, have the lowest IC50 of 0.072 mg/ml and 0.080 mg/ml respectively, whereas for ABTS we have PE of V1 that is very rich in polyphenols which has the smallest IC50 value of 0.218 mg/ml.
References
[1]
Pandey, V.P., Singh, S., Jaiswal, N., Awasthi, M., Pandey, B. and Dwivedi, U.N. (2013) Papaya Fruit Ripening: ROS Metabolism, Gene Cloning, Characterization and Molecular Docking of Peroxidase. Journal of Molecular Catalysis B Enzymatic, 98, 98-105. https://doi.org/10.1016/j.molcatb.2013.10.005
[2]
Pande, D., Negi, R., Khanna, R.S. and Khanna, H.D. (2011) Protein Damage and Antioxidant Status Alterations Caused by Oxidative Injury in Chronic Myeloid Leukemia. Einstein Journal of Biology and Medicine, 27, 55-58.
https://doi.org/10.23861/EJBM20112737
[3]
Sharma, P., Jha, A.B., Dubey, R.S. and Pessarakli, M. (2012) Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany, 2012, Article ID: 217037.
https://doi.org/10.1155/2012/217037
[4]
Rachitha, P., Krupashree, K., Jayashree, G.V., Kandikattu, H.K., Amruta, N., Gopalan, N., Rao, M.K. and Khanum, F. (2018) Chemical Composition, Antioxidant Potential, Macromolecule Damage and Neuroprotective Activity of Convolvulus pluricaulis. Journal of Traditional and Complementary Medicine, 8, 483-496.
https://doi.org/10.1016/j.jtcme.2017.11.002
[5]
Pandey, S., Walpole, C., Cabot, P., Shaw, P., Batra, J. and Hewavitharana, A. (2017) Selective Anti-Proliferative Activities of Carica papaya Leaf Juice Extracts against Prostate Cancer. Biomedicine & Pharmacotherapy, 89, 515-523.
https://doi.org/10.1016/j.biopha.2017.02.050
[6]
Shashni B. and Nagasaki, Y. (2018) Nitroxide Radical-Containing Nanoparticles Attenuate Tumorigenic Potential of Triple Negative Breast Cancer. Biomaterials, 178, 48-62. https://doi.org/10.1016/j.biomaterials.2018.05.042
[7]
Uddin S. and Ahmad, S. (1995) Dietary Antioxidants Protection against Oxidative Stress. Biochemistry Education, 23, 2-7.
https://doi.org/10.1016/0307-4412(94)00097-9
[8]
Taleb, A., Ahmad, K.A., Ihsan, A.U., Qu, J., Lin, N., Hezam, K., Koju, N., Hui, L. and Qilong, D. (2018) Antioxidant Effects and Mechanism of Silymarin in Oxidative Stress Induced Cardiovascular Diseases. Biomedicine & Pharmacotherapy, 102, 689-698. https://doi.org/10.1016/j.biopha.2018.03.140
[9]
Losada-Barreiro, S. and Bravo-Díaz, C. (2017) Free Radicals and Polyphenols: The Redox Chemistry of Neurodegenerative Diseases. European Journal of Medicinal Chemistry, 133, 379-402. https://doi.org/10.1016/j.ejmech.2017.03.061
[10]
Valdez-Morales, M., Cespedes-Acuna, C.L., Valverde, M., Ramírez-Chávez, E. and Paredes-Lopez, O. (2016) Phenolic Compounds, Antioxidant Activity and Lipid Profile of Huitlacoche Mushroom (Ustilago maydis) Produced in Several Maize Genotypes at Different Stages of Development. Plant Foods for Human Nutrition, 71, 436-443. https://doi.org/10.1007/s11130-016-0572-3
[11]
Chavarria, D., Silva, T., Martins, D., Bravo, J., Summavielle, T., Garridoc, J. and Borges, F. (2015) Exploring Cinnamic Acid Scaffold: Development of Promising Neuroprotective Lipophilic Antioxidants. MedChemComm, 6, 1043-1053.
https://doi.org/10.1039/C5MD00018A
[12]
Corcuera, L.A., Amézqueta, S., Arbillaga, L., Vettorazzi, A., Tourino, S. and Torres, J.L. (2012) A Polyphenol-Enriched Cocoa Extract Reduces Free Radicals Produced by Mycotoxins. Food and Chemical Toxicology, 50, 989-995.
https://doi.org/10.1016/j.fct.2011.11.052
[13]
Chen, F., Liu, C.J., Tschaplinski, T.J. and Zhao, N. (2009) Genomics of Secondary Metabolism in Populus: Interactions with Biotic and Abiotic Environments. Critical Reviews in Plant Sciences, 28, 375-392. https://doi.org/10.1080/07352680903241279
[14]
Carluccio, M.A., Calabriso, N., Scoditti, E., Massaro, M. and Caterina, R.D. (2015) Mediterranean Diet Polyphenols. In: The Mediterranean Diet, Academic Press, San Diego, 291-300. https://doi.org/10.1016/B978-0-12-407849-9.00027-0
[15]
Yonekura-Sakakibara, K. and Saito, K. (2009) Functional Genomics for Plant Natural Product Biosynthesis. National Product Reports, 26, 1466-1487.
https://doi.org/10.1039/b817077k
[16]
Siracusa, L. and Ruberto, G. (2014) Plant Polyphenol Profiles as a Tool for Traceability and Valuable Support to Biodiversity. In: Watson, R.R., Ed., Polyphenols in Plants, Academic Press, San Diego, 15-33.
https://doi.org/10.1016/B978-0-12-397934-6.00002-4
[17]
Chatha, S.A.S., Hussain, A.I., Bajwa, J.U.R. and Sagir, M. (2006) Antioxidant Activity of Different Solvent Extracts of Rice Bran at Accelerated Storage of Sunflower Oil. Journal of Food Lipids, 13, 424-433.
https://doi.org/10.1111/j.1745-4522.2006.00068.x
[18]
Kamemura, N. (2018) Butylated Hydroxytoluene, a Food Additive, Modulates Membrane Potential and Increases the Susceptibility of Rat Thymocytes to Oxidative Stress. Computational Toxicology, 6, 32-38.
https://doi.org/10.1016/j.comtox.2018.04.001
[19]
Thakore, K.N. (2014) Butylated Hydroxyanisole. In: Wexler, P., Ed., Encyclopedia of Toxicology, 3rd Edition, Academic Press, San Diego, 581-582.
https://doi.org/10.1016/B978-0-12-386454-3.00262-1
[20]
Locatelli, C., Leal, P.C., Yunes, R.A., Nunes, R.J. and Creczynski-Pasa, T.B. (2009) Gallic Acid Ester Derivatives Induce Apoptosis and Cell Adhesion Inhibition in Melanoma Cells: The Relationship between Free Radical Generation, Glutathione Depletion and Cell Death. Chemico-Biological Interactactions, 181, 175-184.
https://doi.org/10.1016/j.cbi.2009.06.019
[21]
Aryee, A.N.A., Agyei, D. and Akanbi, T.O. (2018) Food for Oxidative Stress Relief: Polyphenols. In: Encyclopedia of Food Chemistry, Reference Module in Food Science, Elsevier, New York, 392-398.
[22]
Belscak-Cvitanovic, A., Durgo, K., Hudek, A., Bacun-Druzina, V. and Komes, D. (2018) Overview of Polyphenols and Their Properties. In: Galanakis, C.M., Ed., Polyphenols: Properties, Recovery, and Applications, Woodhead Publishing, New York, 3-44. https://doi.org/10.1016/B978-0-12-813572-3.00001-4
[23]
Kwon, Y. (2018) Food-Derived Polyphenols Inhibit the Growth of Ovarian Cancer Cells Irrespective of Their Ability to Induce Antioxidant Responses. Heliyon, 4, e00753. https://doi.org/10.1016/j.heliyon.2018.e00753
[24]
Song, J., Li, D., Liu, C. and Zhang, Y. (2011) Optimized Microwave-Assisted Extraction of Total Phenolics (TP) from Ipomoea Batatas Leaves and Its Antioxidant Activity. Innovative Food Science & Emerging Technology, 12, 282-287.
https://doi.org/10.1016/j.ifset.2011.03.001
[25]
Dahmoune, F., Nayak, B., Moussi, K., Remini, H. and Madani, K. (2015) Optimization of Microwave-Assisted Extraction of Polyphenols from Myrtus communis L. Leaves. Food Chemistry, 166, 585-595.
https://doi.org/10.1016/j.foodchem.2014.06.066
[26]
Yang, Y.C., Ji, L., Meng, L., Nan, W. and Li, X.L. (2010) Optimisation of Microwave-Assisted Enzymatic Extraction of Corilagin and Geraniin from Geranium sibiricum Linne and Evaluation of Antioxidant Activity. Food Chemistry, 122, 373-380. https://doi.org/10.1016/j.foodchem.2010.02.061
[27]
Schlienger, J.L. (2014) Diabète et phytothérapie: les faits. Médecine des Maladies Métaboliques, 8, 101-106. https://doi.org/10.1016/S1957-2557(14)70696-0
[28]
Kumar, N.S. and Devi, S. (2017) The Surprising Health Benefits of Papaya Seeds: A Review. Journal of Pharmacognosy and Phytochemistry, 6, 424-429.
[29]
Pathak, N., Khan, S., Bhargava, A., Raghuram, G.V., Jain, D. and Panwar, H. (2014) Cancer Chemopreventive Effects of the Flavonoid-Rich Fraction Isolated from Papaya Seeds. Nutrition and Cancer, 66, 857-871.
https://doi.org/10.1080/01635581.2014.904912
[30]
Bestermann, W., Houston, M.C, Basile, J., Egan, B., Ferrario, C.M., Lackland, D., Hawkins, R.G., Reed, J., Rogers, P., Wise, D. and Moore, M.A. (2005) Addressing the Global Cardiovascular Risk of Hypertension, Dyslipidemia, Diabetes Mellitus, and the Metabolic Syndrome in the Southeastern United States, Part II: Treatment Recommendations for Management of the Global Cardiovascular Risk of Hypertension, Dyslipidemia, Diabetes Mellitus, and the Metabolic Syndrome. American Journal of the Medical Sciences, 329, 292-305.
https://doi.org/10.1097/00000441-200506000-00009
[31]
Vij, T. and Prashar, Y. (2015) A Review on Medicinal Properties of Carica papaya Linn. Asian Pacific Journal of Tropical Disease, 5, 1-6.
https://doi.org/10.1016/S2222-1808(14)60617-4
[32]
Vuong, Q.V., Hirun, S., Roach, P.D., Bowyer, M.C., Phillips, P.A. and Scarlett, C.J. (2013) Effect of Extraction Conditions on Total Phenolic Compounds and Antioxidant Activities of Carica papaya Leaf Aqueous Extracts. Journal of Herbal Medicine, 3, 104-111. https://doi.org/10.1016/j.hermed.2013.04.004
[33]
Mohdaly, A.A.A., Smetanska, I., Ramadan, M.F., Sarhan, M.A. and Mahmoud, A. (2011) Antioxidant Potential of Sesame (Sesamum indicum) Cake Extract in Stabilization of Sunflower and Soybean Oils. Industrial Crops and Products, 34, 952-959.
https://doi.org/10.1016/j.indcrop.2011.02.018
[34]
Ordonez, A.A.L., Gomez, J.D., Vattuone, M.A. and lsla, M.I. (2006) Antioxidant Activities of Sechium edule (Jacq.) Swartz Extracts. Food Chemistry, 97, 452-458.
https://doi.org/10.1016/j.foodchem.2005.05.024
[35]
Li, Y., Guo, C., Yang, J., Wei, J., Xu, J. and Cheng, S. (2006) Evaluation of Antioxidant Properties of Pomegranate Peel Extract in Comparison with Pomegranate Pulp Extract. Food Chemistry, 96, 254-260.
https://doi.org/10.1016/j.foodchem.2005.02.033
[36]
Akhtar, P., Yaakob, Z., Ahmed, Y., Shahinuzzaman, M. and Hyder, M.K.M. (2018) Total Phenolic Contents and Free Radical Scavenging Activity of Different Parts of Jatropha Species. Industrial Crops and Products, 30, 365-370.
[37]
Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L. and Byrne, D.H. (2006) Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. Journal of Food Composition and Analysis, 19, 669-675. https://doi.org/10.1016/j.jfca.2006.01.003
[38]
Gertenbach, D.D. (2016) Solid-Liquid Extraction Technologies for Manufacturing Nutraceuticals. In: Shi, J.X., Le Maguer, M. and Mazza, G., Eds., Functional Foods: Biochemical and Processing Aspects, CRC Press, Boca Raton, 331-366.
[39]
Asghar, N., Naqvi, S.A., Hussain, Z., Rasool, N. and Khan, Z.A. (2016) Compositional Difference in Antioxidant and Antibacterial Activity of All Parts of the Carica papaya Using Different Solvents. Chemistry Central Journal, 10, 5.
https://doi.org/10.1186/s13065-016-0149-0
[40]
Maisarah, A., Nurul Amira, B., Asmah, R. and Fauziah, O. (2013) Antioxidant Analysis of Different Parts of Carica papaya. International Food Research Journal, 20, 1043-1048.
[41]
Martial-Didier, A.K., Hubert, K.K., Parfait, K.E.J. and Kablan, T. (2017) Phytochemical Properties and Proximate Composition of Papaya (Carica papaya L. var Solo 8) Peels. Turkish Journal of Agriculture: Food Science and Technology, 5, 676-680. https://doi.org/10.24925/turjaf.v5i6.676-680.1154
[42]
Lee S.J. (2013) Antioxidant Activity of a Novel Synthetic Hexa-Peptide Derived from an Enzymatic Hydrolysate of Duck Skin By-Products. Food and Chemical Toxicology, 62, 276-280. https://doi.org/10.1016/j.fct.2013.08.054
[43]
Ahn, J.H., Jo, Y.H., Kim, S.B., Turk, A., Oh, K.E., Hwang, B.Y., Lee, K.Y. and Mi, K. (2018) Identification of Antioxidant Constituents of the Aerial Part of Plantago Asiatica Using LC-MS/MS Coupled DPPH Assay. Phytochemistry Letters, 26, 20-24. https://doi.org/10.1016/j.phytol.2018.05.006
[44]
Al-Farsi, M., Al-Amri, A., Al-Hadhrami, A. and Al-Belushi, S. (2018) Color, Flavonoids, Phenolics and Antioxidants of Omani Honey. Heliyon, 4, e00874.
https://doi.org/10.1016/j.heliyon.2018.e00874
[45]
Alahyane, A., Harrak, H., Ayour, J., Elateri, I., Ait-Oubahou, A. and Benichou, M. (2019) Bioactive Compoun DS and Antioxidant Activity of Seventeen Moroccan Date Varieties and Clones (Phoenix dactylifera L.). South African Journal of Botany, 121, 402-409. https://doi.org/10.1016/j.sajb.2018.12.004
[46]
Al Turki, S., Shahba, M.A. and Stushnoff, C. (2010) Diversity of Antioxidant Properties and Phenolic Content of Date Palm (Phoenix dactylifera L.) Fruits as Affected by Cultivar and Location. Journal of Food, Agriculture and Environment, 8, 253-260. https://doi.org/10.1016/j.sajb.2018.12.004