The behavior of wall shear stress (WSS) was previously reported in a deformable aneurysm model using fluid-structure interactions. However, these findings have not been validated. In the present study, we examined the effect of elasticity (i.e., deformation) on wall shear stress inside a cerebral aneurysm at the apex of a bifurcation using particle image velocimetry in vitro. The flow model simulated a human patient-specific aneurysm at the apex of the bifurcation of the middle cerebral artery. Flow characteristics by wall elasticity were examined for both elastic and non-deformable aneurysm models with pulsatile blood flow. The absolute temporally- and spatially-averaged WSS along the bleb wall was smaller in the elastic model than that in the non-deformable model. This small WSS may be related to attenuation of the WSS. Further, the WSS gradient had a finite value near the stagnation point of the aneurysm dome. Finally, the WSS gradient near the stagnation point was slightly smaller in the elastic model than that in the non-deformable model. These data suggest that elasticity of the aneurysm wall can affect the progression and rupture of aneurysms via hemodynamic stress.
References
[1]
Shojima, M., Oshima, M., Takai, K., Torii, R., Nagata, K., Shirouzu, I., Morita, A. and Kirino, T. (2005) Role of the Bloodstream Impacting Force and the Local Pressure Elevation in the Rupture of Cerebral Aneurysm. Stroke, 36, 1933-1938.
https://doi.org/10.1161/01.STR.0000177877.88925.06
[2]
Ahmed, S., Sutalo, I.D., Kavnoudias, H. and Madan, A. (2007) Fluid Structure Interaction Modeling of a Patient Specific Cerebral Aneurysm: Effect of Hypertension and Modulus of Elasticity. 16th Australasian Fluid Mechanics Conference, Crown Plaza, 2-7 December 2007, 75-81.
[3]
Torii, R., Oshima, M., Kobayashi, T., Takagi, K. and Tezduyar, T.E. (2005) Influence of Wall Elasticity in Patient-Specific Hemodynamic Simulations. Computers & Fluids, 36, 160-168. https://doi.org/10.1016/j.compfluid.2005.07.014
[4]
Rayz, V.L., Boussel, L., Acevedo-Bolton, G., Martin, A.J., Young, M.T., Lawton, R., Higashida, R. and Saloner, D. (2008) Numerical Simulations of Flow in Cerebral Aneurysms: Comparison of CFD Results and In Vivo MRI Measurements. Journal of Biomechanical Engineering, 130, Article ID: 051011, 1-9.
https://doi.org/10.1115/1.2970056
[5]
Cebral, J.R., Castro, M.A., Burgess, J.E., Pergolizzi, R.S., Sheridan, M.J. and Putman, C.M. (2005) Characterization of Cerebral Aneurysms for Assessing Risk of Rupture by Using Patient-Specific Computational Hemodynamics Models. American Journal of Neuroradiology, 26, 2550-2559.
[6]
Meng, H., Wang, Z, Hoi, Y., Gao, L., Metaxa, L., Swartz, D.D. and Kolega, J. (2007) Complex Hemodynamics at the Apex of Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation. Stroke, 38, 1924-1931.
https://doi.org/10.1161/STROKEAHA.106.481234
[7]
Sujan, D.H.M., Tremmel, M., Mocco, J., Kim, M., Yamamoto, J., Siddiqui, A.H., Hopkins, L.N. and Meng, H. (2008) Morphology Parameters for Cerebral Aneurysm Rupture Risk Assessment. Neurosurgery, 63, 185-197.
https://doi.org/10.1227/01.NEU.0000316847.64140.81
[8]
Xiang, J., Natarajan, S.K., Tremmel, M., Ma, D., Mocco, J., Hopkins, L.N., Shiddiqui, A.H., Levy, E.I. and Meng, H. (2011) Hemodynamic-Morphologic Discriminants for Intracranial Aneurysm Rupture. Stroke, 42, 144-152.
https://doi.org/10.1161/STROKEAHA.110.592923
[9]
Dolan, J.M., Kolega, J. and Meng, H. (2013) High Wall Shear Stress and Spatial Gradients in Vascular Pathology: A Review. Annals of Biomedical Engineering, 41, 1411-1427. https://doi.org/10.1007/s10439-012-0695-0
[10]
Acevedo-Bolton, G., Jou, L.D., Dispensa, B.P., Lawton, M.T., Higashida, R.T., Martin, A.J. and Saloner, D. (2006) Estimating the Hemodynamic Impact of Interventional Treatments of Aneurysms: Numerical Simulation with Experimental Validation: Technical Case Report. Neurosurgery, 59, E429-E430.
https://doi.org/10.1227/01.NEU.0000223495.39240.9A
[11]
Ford, M.D., Nikolov, H.N., Lownie, S.P., DeMont, E.M., Kalata, W., Loth, F., Holdsworth, D.W. and Steinman, D.A. (2008) PIV-Measured versus CFD-Predicted Flow Dynamics in Anatomically Realistic Cerebral Aneurysm Models. Journal of Biomechanical Engineering, 130, Article ID: 021015-1/9.
[12]
Sforza, D., Putman, C., Tateshima, S., Vinuela, F. and Cebral, J. (2012) Effects of Perianeurysmal Environment during the Growth of Cerebral Aneurysm: A Case Study. American Journal of Neuroradiology, 33, 1115-1120.
https://doi.org/10.3174/ajnr.A2908
[13]
Hoi, Y., Woodward, S.H., Kim, M., Taulbee, D.B. and Meng, H. (2006) Validation of CFD Simulations of Cerebral Aneurysms with Implication of Geometric Variation. Journal of Biomechanical Engineering, 128, 844-851.
https://doi.org/10.1115/1.2354209
[14]
Tada, S. and Tarbell, J.M. (2005) A Computational Study of Flow in a Compliant Carotid Bifurcation-Stress Phase Angle Correlation with Shear Stress. Annals of Biomedical Engineering, 33, 1202-1212. https://doi.org/10.1007/s10439-005-5630-1
[15]
Torii, R., Oshima, M., Kobayashi, T., Takagi, K. and Tezduyar, T.E. (2010) Influence of Wall Thickness on Fluid-Structure Interaction Computations of Cerebral Aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 26, 336-347. https://doi.org/10.1002/cnm.1289
[16]
Bazilevs, Y., Hsu, M.C., Zhang, Y., Wang, W., Liang, X., Kvamsdal, T., Brekken, R. and Isaksen, J.G. (2010) A Fully-Coupled Fluid-Structure Interaction Simulation of Cerebral Aneurysms. Computational Mechanics, 46, 3-16.
https://doi.org/10.1007/s00466-009-0421-4
[17]
Lee, C.J., Zhang, Y., Takao, H., Murayama, Y. and Qian, Y. (2013) A Fluid-Structure Interaction Study Using Patient-Specific Ruptured and Unruptured Aneurysm: The Effect of Aneurysm Morphology, Hypertension and Elasticity. Journal of Biomechanics, 46, 2402-2410.
https://doi.org/10.1016/j.jbiomech.2013.07.016
[18]
Hayashi, K., Handa, H., Nagasawa, S., Okumura, A. and Moritake, K. (1980) Stiffness and Elastic Behavior of Human Intracranial and Extracranial Arteries. Journal of Biomechanics, 13, 175-184. https://doi.org/10.1016/0021-9290(80)90191-8
[19]
Yagi, T., Sato, A., Shinke, M., Takahashi, S., Tobe, Y., Takao, H., Murayama, Y. and Umezu, M. (2013) Experimental Insights into Flow Impingement in Cerebral Aneurysm by Stereoscopic Particle Image Velocimetry: Transition from a Laminar Regime. Journal of the Royal Society Interface, 10, Article ID: 20121031.
https://doi.org/10.1098/rsif.2012.1031
[20]
Okada, K. and Yamaguchi, R. (2011) Structural of Pulsatile Flow in a Model of Elastic Cerebral Aneurysm. Journal of Biorheology, 25, 1-7.
https://doi.org/10.1007/s12573-011-0035-2
[21]
Xu, L., Sugawara, M., Tanaka, G., Ohta, M., Liu, H. and Yamaguchi, R. (2016) Effect of Elasticity on Wall Shear Stress inside Cerebral Aneurysm at Anterior Cerebral Artery. Technology and Health Care, 24, 349-357.
https://doi.org/10.3233/THC-161135
[22]
Tobe, Y., Yagi, T., Iwabuchi, Y., Yamanashi, M., Takamura, K., Sugiura, T., Umezu, M., Hayashi, Y., Yoshida, H., Nakajima, A., Nishimura, K., Okada, Y., Sugawara, M., Hiraguchi, S., Kudo, T. and Kitahara, S. (2014) Relationship between Pathology and Hemodynamics of Human Unruptured Cerebral Aneurysms. In: Goh, J., Ed., The 15th International Conference on Biomedical Engineering. IFMBE Proceedings, Vol. 43, Springer, Cham, 44-47. https://doi.org/10.1007/978-3-319-02913-9_12
[23]
Ujiie, H., Tamano, Y., Sasaki, K. and Hori, T. (2001) Is the Aspect Ratio a Reliable Index for Predicting the Rupture of a Saccular Aneurysm? Neurosurgery, 48, 495-503. https://doi.org/10.1097/00006123-200103000-00007
[24]
Kosukegawa, H., Shida, S., Hashida, Y. and Ohta, M. (2010) Mechanical Properties of Tube-Shape Polyvinyl Alcohol Hydrogel Blood Vessel Biomodel. ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting, Montreal, 1-5 August 2010, 1877-1883.
[25]
Valen-Sendstad, K., Mardal, K.A., Mortensen, M., Reif, B.A.P. and Langtangen, H.P. (2011) Direct Numerical Simulation of Transitional Flow in a Patient-Specific Intracranial Aneurysm. Journal of Biomechanics, 44, 2826-2832.
https://doi.org/10.1016/j.jbiomech.2011.08.015
[26]
Yamaguchi, R., Tanaka, G. and Liu, H. (2016) Effect of Elasticity on Flow Characteristics inside Intracranial Aneurysms. International Journal of Neurology and Neurotherapy, 3, 049.
[27]
Gao, L., Hoi, Y., Swartz, D.D., Kolega, J., Siddiqui, A. and Meng, H. (2008) Nascent Aneurysm Formation at the Basilar Terminus Induced by Hemodynamics. Stroke, 39, 2085-2090. https://doi.org/10.1161/STROKEAHA.107.509422
[28]
Meyer, F.B., Huston III, J. and Riederer, S.S. (1993) Pulsatile Increases in Aneurysm Size Determined by Cine Phase-Contrast MR Angiography. Journal of Neurosurgery, 78, 879-883. https://doi.org/10.3171/jns.1993.78.6.0879
[29]
Umeda, Y., Ishida, F., Hamada, K., Fukazawa, K., Miura, Y., Toma, N., Suzuki, H., Matsushima, S., Shimosaka, S. and Taki, W. (2011) Novel Dynamic Four-Dimensional CT Angiography Revealing 2-Type Motions of Cerebral Arteries. Stroke, 42, 815-818. https://doi.org/10.1161/STROKEAHA.110.591008
[30]
Cebral, J.R., Mut, F., Sforza, D., Löhner, R., Scrivano, E., Lylyk, P. and Putman, C.M. (2011) Clinical Application of Image-Based CFD for Cerebral Aneurysms. International Journal for Numerical Methods in Biomedical Engineering, 27, 977-992.
https://doi.org/10.1002/cnm.1373