全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Energy Metabolism and Allocation in Selfish Immune System and Brain: A Beneficial Role of Insulin Resistance in Aging

DOI: 10.4236/fns.2019.101006, PP. 64-80

Keywords: Selfish Immune System, Selfish Brain, Energy Balance, Insulin Resistance

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is relatively limited knowledge concerning our understanding of how our immune system and brain take most of the available energy in a selfish manner to compensate for their own needs on priority in high energy demanding situations. The main objective of this review is to understand the energy allocation to immune system and brain in infections and/or fight or flight situations. The immune system and brain behave in a selfish manner as they allocate themselves majority of the total available energy. Insulin resistance (IR) is used as a tool for energy allocation by these systems. The immune system is activated as a response to stress and infection. Similarly, the brain gets activated as a response to any external environmental impulse, anxiety, and/or mental factor. These situations need to be dealt in a way to minimize their adverse health effects. The immune system and the brain in such situations need enormous energy for activation which is derived from the energy quota otherwise allocated to other organs. This maximum flux of energy towards these systems is achieved by making rest of the organs less responsive to insulin, a condition known as IR. As immune system and brain do not depend upon insulin for uptake of glucose, these systems are benefited from IR. IR is indicated as a beneficial role ensuring maximum energy allocation to these systems for improving health and well-being.

References

[1]  Arlettaz, R., Christe, P. and Schaub, M. (2017) Food Availability as a Major Driver in the Evolution of Life-History Strategies of Sibling Species. Ecology and Evolution, 7, 4163-4172.
https://doi.org/10.1002/ece3.2909
[2]  Careau, V., Thomas, D., Humphries, M.M. and Réale, D. (2008) Energy Metabolism and Animal Personality. Oikos, 117, 641-653.
https://doi.org/10.1111/j.0030-1299.2008.16513.x
[3]  Blaxter, K. (1989) Energy Metabolism in Animals and Man. Cambridge University Press CUP Archive, Cambridge.
[4]  Romieu, I., Dossus, L., Barquera, S., Blottière, H.M., Franks, P.W., Gunter, M., Hwalla, N., Hursting, S.D., Leitzmann, M., Margetts, B. and Nishida, C. (2017) Energy Balance and Obesity: What Are the Main Drivers? Cancer Cause Control, 28, 247-258.
https://doi.org/10.1007/s10552-017-0869-z
[5]  Hill, J.O., Wyatt, H.R. and Peters, J.C. (2012) Energy Balance and Obesity. Circulation, 126, 126-132.
https://doi.org/10.1161/CIRCULATIONAHA.111.087213
[6]  Straub, R.H. (2014) Insulin Resistance, Selfish Brain, and Selfish Immune System: An Evolutionarily Positively Selected Program Used in Chronic Inflammatory Diseases. Arthritis Research & Therapy, 16, S4.
https://doi.org/10.1186/ar4688
[7]  Spiegelman, B.M. and Flier, J.S. (2001) Obesity and the Regulation of Energy Balance. Cell, 104, 531-543. https://doi.org/10.1016/S0092-8674(01)00240-9
[8]  Chaput, J.P. (2014) Sleep Patterns, Diet Quality and Energy Balance. Physiology & Behavior, 134, 86-91. https://doi.org/10.1016/j.physbeh.2013.09.006
[9]  Triggiani, A.I., Valenzano, A., Ciliberti, M.A., Moscatelli, F., Villani, S., Monda, M., Messina, G., Federici, A., Babiloni, C. and Cibelli G. (2017) Heart Rate Variability Is Reduced in Underweight and Overweight Healthy Adult Women. Clinical Physiology and Functional Imaging, 37, 162-167.
https://doi.org/10.1111/cpf.12281
[10]  Lichtenstein, A.H., Appel, L.J., Brands, M., Carnethon, M., Daniels, S., Franch, H.A., Franklin, B., Kris-Etherton, P., Harris, W.S., Howard, B. and Karanja, N. (2006) Summary of American Heart Association diet and Lifestyle Recommendations Revision. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2186-2191.
https://doi.org/10.1161/01.ATV.0000238352.25222.5e
[11]  Dvir, D., Cohen, J. and Singer, P. (2006) Computerized Energy Balance and Complications in Critically Ill Patients: An Observational Study. Clinical Nutrition, 25, 37-44.
https://doi.org/10.1016/j.clnu.2005.10.010
[12]  Yamagata, A.S., Mansur, R.B., Rizzo, L.B., Rosenstock, T., McIntyre, R.S. and Brietzke, E. (2017) Selfish Brain and Selfish Immune System Interplay: A Theoretical Framework for Metabolic Comorbidities of Mood Disorders. Neuroscience & Biobehavioral Reviews, 72, 43-49.
https://doi.org/10.1016/j.neubiorev.2016.11.010
[13]  Birkett, S. and de Lange, K. (2001) Limitations of Conventional Models and a Conceptual Framework for a Nutrient Flow Representation of Energy Utilization by Animals. British Journal of Nutrition, 86, 647-659.
https://doi.org/10.1079/BJN2001441
[14]  Dauncey, M.J. (1991) Whole-Body Calorimetry in Man and Animals. Thermochimica Acta, 193, 1-40. https://doi.org/10.1016/0040-6031(91)80171-E
[15]  Wang, Z., Ying, Z., Bosy-Westphal, A., Zhang, J., Schautz, B., Later, W., Heymsfield, S.B. and Müller, M.J. (2010) Specific Metabolic Rates of Major Organs and Tissues across Adulthood: Evaluation by Mechanistic Model of Resting Energy Expenditure. The American Journal of Clinical Nutrition, 92, 1369-1377.
https://doi.org/10.3945/ajcn.2010.29885
[16]  Navarrete, A., van Schaik, C.P. and Isler, K. (2011) Energetics and the Evolution of Human Brain Size. Nature, 480, 91-93.
https://doi.org/10.1038/nature10629
[17]  Peters, A., Schweiger, U., Pellerin, L., Hubold, C., Oltmanns, K.M., Conrad, M., Schultes, B., Born, J. and Fehm, H.L. (2004) The Selfish Brain: Competition for Energy Resources. Neuroscience & Biobehavioral Reviews, 28, 143-180.
https://doi.org/10.1016/j.neubiorev.2004.03.002
[18]  Pan, Y., Mansfield, K.D., Bertozzi, C.C., Rudenko, V., Chan, D.A., Giaccia, A.J. and Simon, M.C. (2007) Multiple Factors Affecting Cellular Redox Status and Energy Metabolism Modulate Hypoxia-Inducible Factor Prolyl Hydroxylase Activity in Vivo and in Vitro. Molecular and Cellular Biology, 27, 912-925.
https://doi.org/10.1128/MCB.01223-06
[19]  Camandola, S. and Mattson, M.P. (2017) Brain Metabolism in Health, Aging, and Neurodegeneration. The EMBO Journal, 36, 1474-1492.
https://doi.org/10.15252/embj.201695810
[20]  Murray, A.J., Lygate, C.A., Cole, M.A., Carr, C.A., Radda, G.K., Neubauer, S. and Clarke, K. (2006) Insulin Resistance, Abnormal Energy Metabolism and Increased Ischemic Damage in the Chronically Infarcted Rat Heart. Cardiovascular Research, 71, 149-157.
https://doi.org/10.1016/j.cardiores.2006.02.031
[21]  Kingwell, K. (2017) Diabetes: Turning down Galectin 3 to Combat Insulin Resistance. Nature Reviews Drug Discovery, 16, 18.
https://doi.org/10.1038/nrd.2016.276
[22]  Saltiel, A. and Olefsky, J.M. (2017) Inflammatory Mechanisms Linking Obesity and Metabolic Disease. Journal of Clinical Investigation, 127, 1-4.
https://doi.org/10.1172/JCI92035
[23]  Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M. and Shimomura, I. (2017) Increased Oxidative Stress in Obesity and Its Impact on Metabolic Syndrome. Journal of Clinical Investigation, 114, 1752-1761.
https://doi.org/10.1172/JCI21625
[24]  Suhaimi, F.M., Chase, J.G., Pretty, C.G., Shaw, G.M., Razak, N.N. and Jamaludin, U.K. (2017) Insulin Sensitivity and Sepsis Score: A Correlation between Model-Based Metric and Sepsis Scoring System in Critically Ill Patients. Biomedical Signal Processing and Control, 32, 112-123.
https://doi.org/10.1016/j.bspc.2016.08.005
[25]  Rosa, I.A.D.L., Rodriguez-Cuenca, S., Jimenez-Gomez, Y., Ruiz-Limon, P., Perez-Sanchez, C., Abalos, M.C., Collantes, E., Vidal-Puig, A., Escudero-Contreras, A., Lopez-Pedrera, C. and Barbarroja, N. (2017) AB0092 Effect of Methotrexate, Leflunomide and Hydroxychloroquine on the Insulin Resistance and Obesity Associated with Rheumatoid Arthritis: Obese Mouse Models of Rheumatoid Arthritis. Annals of the Rheumatic Diseases, 76, 1078.
[26]  Sánchez-Pérez, H., Tejera-Segura, B., de Vera-González, A., González-Delgado, A., Olmos, J.M., Hernández, J.L., Corrales, A., López-Mejías, R., González-Gay, M.A. and Ferraz-Amaro, I. (2017) Insulin Resistance in Systemic Lupus Erythematosus Patients: Contributing Factors and Relationship with Subclinical Atherosclerosis. Clinical and Experimental Rheumatology, 35, 885-892.
[27]  Cefle, A., Karadag, D.T., Bilen, M., Sener, S.Y., Isik, O.O. and Yazici, A. (2016) AB0668 Effects of Infliximab Treatment in Terms of Metabolic Parameters and Insulin Resistance in Ankylosing Spondylitis Patients. Annals of the Rheumatic Diseases, 75, 1133.
https://doi.org/10.1136/annrheumdis-2016-eular.5493
[28]  Blessing, E.M., Reus, V., Mellon, S.H., Wolkowitz, O.M., Flory, J.D., Bierer, L., Lindqvist, D., Dhabhar, F., Li, M., Qian, M. and Abu-Amara, D. (2017) Biological Predictors of Insulin Resistance Associated with Posttraumatic Stress Disorder in Young Military Veterans. Psychoneuroendocrino, 82, 91-97.
https://doi.org/10.1016/j.psyneuen.2017.04.016
[29]  Greisen, J., Juhl, C.B., Grøfte, T., Vilstrup, H., Jensen, T.S. and Schmitz, O. (2001) Acute Pain Induces Insulin Resistance in Humans. Anesthesiology, 95, 578-584.
https://doi.org/10.1097/00000542-200109000-00007
[30]  Martins-Oliveira, M.R.D., Akerman, S., Holland, P.R., Hoffmann, J.R., Tavares, I. and Goadsby, P.J. (2017) Neuroendocrine Signaling Modulates Specific Neural Networks Relevant to Migraine. Neurobiology of Disease, 101, 16-26.
https://doi.org/10.1016/j.nbd.2017.01.005
[31]  Steiner, J., Berger, M., Guest, P.C., Dobrowolny, H., Westphal, S., Schiltz, K. and Sarnyai Z. (2017) Assessment of Insulin Resistance Among Drug-Naive Patients With First-Episode Schizophrenia in the Context of Hormonal Stress Axis Activation. JAMA psychiatry, 74, 968-970.
https://doi.org/10.1001/jamapsychiatry.2017.1983
[32]  Greenhalgh, A.M., Gonzalez-Blanco, L., Garcia-Rizo, C., Fernandez-Egea, E., Miller, B., Arroyo, M.B. and Kirkpatrick, B. (2017) Meta-Analysis of Glucose Tolerance, Insulin, and Insulin Resistance in Antipsychotic-Naive Patients with Non Affective Psychosis. Schizophrenia Research, 179, 57-63.
https://doi.org/10.1016/j.schres.2016.09.026
[33]  Suzanne, M. (2017) Insulin Resistance and Neurodegeneration: Progress towards the Development of New Therapeutics for Alzheimer’s Disease. Drugs, 1, 1-9.
[34]  Brøns, C. and Grunnet, L.G. (2017) Mechanisms in Endocrinology: Skeletal Muscle Lipotoxicity in Insulin Resistance and Type 2 Diabetes: A Causal Mechanism or an Innocent Bystander? European Journal of Endocrinology, 176, 67-78.
https://doi.org/10.1530/EJE-16-0488
[35]  Forouhi, N.G. and Wareham, N.J. (2014) Epidemiology of Diabetes. Medicine, 42, 698-702.
https://doi.org/10.1016/j.mpmed.2014.09.007
[36]  Genné-Bacon, E.A. (2014) Thinking Evolutionarily about Obesity. The Yale Journal of Biology and Medicine, 87, 99.
[37]  Hotamisligil, G.S. (2017) Inflammation, Metaflammation and Immunometabolic Disorders. Nature, 542, 177-185.
https://doi.org/10.1038/nature21363
[38]  Aiello, A., Accardi, G., Candore, G., Gambino, C.M., Mirisola, M., Taormina, G., Virruso, C. and Caruso, C. (2017) Nutrient Sensing Pathways as Therapeutic Targets for Healthy Ageing. Expert Opinion on Therapeutic Targets, 21, 371-380.
[39]  Brain, M. (2015) The Pulse of Modernism: Physiological Aesthetics in Fin-de-Siècle Europe. University of Washington Press, Seattle, 384.
[40]  Peters, A., Pellerin, L., Dallman, M.F., Oltmanns, K.M., Schweiger, U., Born, J. and Fehm, H.L. (2007) Causes of Obesity: Looking beyond the Hypothalamus. Progress in Neurobiology, 81, 61-88.
https://doi.org/10.1016/j.pneurobio.2006.12.004
[41]  Shulman, R.G., Rothman, D.L., Behar, K.L. and Hyder, F. (2004) Energetic Basis of Brain Activity: Implications for Neuroimaging. Trends in Neurosciences, 27, 489-495.
https://doi.org/10.1016/j.tins.2004.06.005
[42]  Brown, A.M. and Ransom, B.R. (2007) Astrocyte Glycogen and Brain Energy Metabolism. Glia, 55, 1263-1271.
https://doi.org/10.1002/glia.20557
[43]  Bélanger, M., Allaman, I. and Magistretti, P.J. (2011) Brain Energy Metabolism: Focus on Astrocyte-Neuron Metabolic Cooperation. Cell Metabolism, 14, 724-738.
https://doi.org/10.1016/j.cmet.2011.08.016
[44]  Erecinska, M., Cherian, S. and Silver, I.A. (2004) Energy Metabolism in Ammalian Brain during Development. Progress in Neurobiology, 73, 397-445.
https://doi.org/10.1016/j.pneurobio.2004.06.003
[45]  Ebert, D., Haller, R.G. and Walton, M.E. (2003) Energy Contribution of Octanoate to Intact Rat Brain Metabolism Measured by 13C Nuclear Magnetic Resonance Spectroscopy. Journal of Neuroscience, 23, 5928-5935.
https://doi.org/10.1523/JNEUROSCI.23-13-05928.2003
[46]  Straub, R.H. (2012) Evolutionary Medicine and Chronic Inflammatory State-Known and New Concepts in Pathophysiology. Journal of Molecular Medicine, 90, 523-534.
https://doi.org/10.1007/s00109-012-0861-8
[47]  Forbes-Ewan, C.H., Morrissey, B.L. and Gregg, G.C. (1989) Use of Doubly Labeled Water Technique in Soldiers Training for Jungle Warfare. Journal of Applied Physiology, 67, 14-18.
https://doi.org/10.1152/jappl.1989.67.1.14
[48]  Jones, P.J., Jacobs, I. and Morris, A. (1993) Adequacy of Food Rations in Soldiers during an Arctic Exercise Measured by Doubly Labeled Water. Journal of Applied Physiology, 75, 1790-1797. https://doi.org/10.1152/jappl.1993.75.4.1790
[49]  Straub, R.H. and Schradin, C. (2016) Chronic Inflammatory Systemic Diseases: An Evolutionary Trade-Off between Acutely Beneficial but Chronically Harmful Programs. Evolution, Medicine, and Public Health, 201, 37-51.
https://doi.org/10.1093/emph/eow001
[50]  Elia, M. (1992) Organ and Tissue Contribution to Metabolic Rate. In: Kinney, J.M. and Tucker, H.N., Eds., Energy Metabolism: Tissue Determinants and Cellular Corollaries, Raven Press, New York, 61-79.
[51]  Buttgereit, F., Burmester, G.R. and Brand, M.D. (2000) Bioenergetics of Immune Functions: Fundamental and Therapeutic Aspects. Immunology Today, 21, 192-199.
https://doi.org/10.1016/S0167-5699(00)01593-0
[52]  Hitze, B., Hubold, C., Van Dyken, R., Schlichting, K., Lehnert, H., Entringer, S. and Peters, A. (2010) How the Selfish Brain Organizes Its Supply and Demand. Frontiers in Neuroenergetics, 2, 7. https://doi.org/10.3389/fnene.2010.00007
[53]  Goodman, M.N., Lowell, B., Belur, E. and Ruderman, N.B. (1984) Sites of Protein Conservation and Loss during Starvation: Influence of Adiposity. American Journal of Physiology, 246, E383-E390. https://doi.org/10.1152/ajpendo.1984.246.5.E383
[54]  Gong, Q.Y., Roberts, N., Garden, A.S. and Whitehouse, G.H. (1998) Fetal and Fetal Brain Volume Estimation in the Third Trimester of Human Pregnancy Using Gradient Echo MR Imaging. Magnetic Resonance Imaging, 16, 235-240.
https://doi.org/10.1016/S0730-725X(97)00281-6
[55]  Miller, S.L., Green, L.R., Peebles, D.M., Hanson, M.A. and Blanco, C.E. (2002) Effects of Chronic Hypoxia and Protein Malnutrition on Growth in the Developing Chick. American Journal of Obstetrics and Gynecology, 186, 261-267.
https://doi.org/10.1067/mob.2002.119629
[56]  Kind, K.L., Roberts, C.T., Sohlstrom, A.I., Katsman, A., Clifton, P.M., Robinson, J.S. and Owens, J.A. (2005) Chronic Maternal Feed Restriction Impairs Growth But Increases Adiposity of the Fetal Guinea Pig. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 288, R119-R126.
https://doi.org/10.1152/ajpregu.00360.2004
[57]  Muhlau, M., Gaser, C., Ilg, R., Conrad, B., Leibl, C., Cebulla, M.H., Backmund, H., Gerlinghoff, M., Lommer, P., Schnebel, A., Wohlschlager, A.M., Zimmer, C. and Nunnemann, S. (2007) Gray Matter Decrease of the Anterior Cingulate Cortex in Anorexia Nervosa. American Journal of Psychiatry, 164, 1850-1857.
https://doi.org/10.1176/appi.ajp.2007.06111861
[58]  Peters, A., Kubera, B., Hubold, C. and Langemann, D. (2011) The Selfish Brain: Stress and Eating Behavior. Frontiers in Neuroscience, 5, 74.
https://doi.org/10.3389/fnins.2011.00074
[59]  Hart, B.L. (1988) Biological Basis of the Behavior of Sick Animals. Neuroscience & Biobehavioral Reviews, 12, 123-137.
https://doi.org/10.1016/S0149-7634(88)80004-6
[60]  Exton, M.S. (1997) Infection-Induced Anorexia: Active Host Defence Strategy. Appetite, 29, 369-383.
https://doi.org/10.1006/appe.1997.0116
[61]  Kent, S., Bluthe, R.M., Dantzer, R., Hardwick, A.J., Kelley, K.W., Rothwell, N.J. and Vannice, J.L. (1992) Different Receptor Mechanisms Mediate the Pyrogenic and Behavioral Effects of Interleukin 1. Proceedings of the National Academy of Sciences, 89, 9117-9120.
https://doi.org/10.1073/pnas.89.19.9117
[62]  Medzhitov, R., Schneider, D.S. and Soares, M.P. (2012) Disease Tolerance as a Defense Strategy. Science, 335, 936-941.
https://doi.org/10.1126/science.1214935
[63]  Mullington, J., Korth, C., Hermann, D.M., Orth, A., Galanos, C., Holsboer, F. and Pollmächer, T. (2000) Dose-Dependent Effects of Endotoxin on Human Sleep. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 278, R947-R955.
https://doi.org/10.1152/ajpregu.2000.278.4.R947
[64]  Maier, S.F., Wiertelak, E.P., Martin, D. and Watkins, L.R. (1993) Interleukin-1 Mediates the Behavioral Hyperalgesia Produced by Lithium Chloride and Endotoxin. Brain Research, 623, 321-324. https://doi.org/10.1016/0006-8993(93)91446-Y
[65]  Dantzer, R. and Kelley, K.W. (2007) Twenty Years of Research on Cytokine-Induced Sickness Behavior. Brain, Behavior, and Immunity, 21, 153-160.
https://doi.org/10.1016/j.bbi.2006.09.006
[66]  Dantzer, R. (2001) Cytokine-Induced Sickness Behavior: Where Do We Stand? Brain, Behavior, and Immunity, 15, 7-24.
https://doi.org/10.1006/brbi.2000.0613
[67]  Johnson, R.W. (2002) The Concept of Sickness Behavior: A Brief Chronological Account of Four Key Discoveries. Veterinary Immunology and Immunopathology, 87, 443-450.
https://doi.org/10.1016/S0165-2427(02)00069-7
[68]  Larson, S.J. and Dunn, A.J. (2001) Behavioral Effects of Cytokines. Brain, Behavior, and Immunity, 15, 371-387.
https://doi.org/10.1006/brbi.2001.0643
[69]  Adamo, S.A. (2006) Comparative Psychoneuroimmunology: Evidence from the Insects. Behavioral and Cognitive Neuroscience Reviews, 5, 128-140.
https://doi.org/10.1177/1534582306289580
[70]  Meyer-Hermann, M.E. and Maini, P.K. (2005) Cutting Edge: Back to “One-Way” Germinal Centers. The Journal of Immunology, 174, 2489-2493.
https://doi.org/10.4049/jimmunol.174.5.2489
[71]  Meyer-Hermann, M. (2002) A Mathematical Model for the Germinal Center Morphology and Affinity Maturation. Journal of Theoretical Biology, 216, 273-300.
https://doi.org/10.1006/jtbi.2002.2550
[72]  Murphy, K.M., Travers, P. and Walport, M. (2011) Janeway’s Immunobiology. Taylor & Francis, Oxford.
[73]  Straub, R.H., Cutolo, M., Buttgereit, F. and Pongratz, G. (2010) Energy Regulation and Neuroendocrine-Immune Control in Chronic Inflammatory Diseases. Journal of Internal Medicine, 267, 543-560.
https://doi.org/10.1111/j.1365-2796.2010.02218.x
[74]  Konsman, J.P., Parnet, P. and Dantzer, R. (2002) Cytokine-Induced Sickness Behaviour: Mechanisms and Implications. Trends in Neurosciences, 25, 154-159.
https://doi.org/10.1016/S0166-2236(00)02088-9
[75]  Dantzer, R., O’Connor, J.C., Freund, G.G., Johnson, R.W. and Kelley, K.W. (2008) From Inflammation to Sickness and Depression: When the Immune System Subjugates the Brain. Nature Reviews Neuroscience, 9, 46-56.
https://doi.org/10.1038/nrn2297
[76]  Rolfe, D.F. and Brown, G.C. (1997) Cellular Energy Utilization and Molecular Origin of Standard Metabolic Rate in Mammals. Physiological Reviews, 77, 731-758.
https://doi.org/10.1152/physrev.1997.77.3.731
[77]  Calder, P.C., Dimitriadis, G. and Newsholme, P. (2007) Glucose Metabolism in Lymphoid and Inflammatory Cells and Tissues. Current Opinion in Clinical Nutrition & Metabolic Care, 10, 531-540. https://doi.org/10.1097/MCO.0b013e3281e72ad4
[78]  Vander, H.M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 324, 1029-1033.
https://doi.org/10.1126/science.1160809
[79]  Tennessen, J.M., Baker, K.D., Lam, G., Evans, J. and Thummel, C.S. (2011) The Drosophila Estrogen-Related Receptor Directs a Metabolic Switch That Supports Developmental Growth. Cell Metabolism, 13, 139-148.
https://doi.org/10.1016/j.cmet.2011.01.005
[80]  Dhabhar, F.S. (2009) Enhancing versus Suppressive Effects of Stress on Immune Function: Implications for Immunoprotection and Immunopathology. Neuroimmunomodulat, 16, 300-317.
https://doi.org/10.1159/000216188
[81]  Klegeris, A., Schulzer, M., Harper, D.G. and McGeer, P.L. (2007) Increase in Core Body Temperature of Alzheimer’s Disease Patients as a Possible Indicator of Chronic Neuroinflammation: A Meta-Analysis. Gerontology, 53, 7-11.
https://doi.org/10.1159/000095386
[82]  Soare, A., Cangemi, R., Omodei, D., Holloszy, J.O. and Fontana, L. (2011) Long-Term Calorie Restriction, But Not Endurance Exercise, Lowers Core Body Temperature in Humans. Aging-US, 3, 374. https://doi.org/10.18632/aging.100280
[83]  Geiser, F. (2004) Metabolic Rate and Body Temperature Reduction during Hibernation and Daily Torpor. Annual Review of Physiology, 66, 239-274.
https://doi.org/10.1146/annurev.physiol.66.032102.115105
[84]  Stieler, J.T., Bullmann, T., Kohl, F., Tøien, Ø., Brückner, M.K., Härtig, W., Barnes, B.M. and Arendt, T. (2011) The Physiological Link between Metabolic Rate Depression and Tau Phosphorylation in Mammalian Hibernation. PLoS ONE, 6, e14530.
https://doi.org/10.1371/journal.pone.0014530
[85]  Pruimboom, L. (2011) Physical Inactivity Is a Disease Synonymous for a Non-Permissive Brain Disorder. Medical Hypotheses, 77, 708-713.
https://doi.org/10.1016/j.mehy.2011.07.022
[86]  Reser, J.E. (2009) Alzheimer’s Disease and Natural Cognitive Aging May Represent Adaptive Metabolism Reduction Programs. Behavioral and Brain Functions, 5, 13.
https://doi.org/10.1186/1744-9081-5-13
[87]  Kubera, B., Hubold, C., Zug, S. and Wischnath, H. (2012) The Brain’s Supply and Demand in Obesity. Frontiers in Neuroengineering, 4, 4.
[88]  Peters, A. (2009) Build-Ups in the Supply Chain of the Brain: On the Neuroenergetic Cause of Obesity and Type 2 Diabetes. Frontiers in Neuroengineering, 1, 2.
[89]  Alam, I., Alam, I., Paracha, P.I. and Pawelec, G. (2012) Higher Estimates of Daily Dietary Net Endogenous Acid Production (NEAP) in the Elderly as Compared to the Young in a Healthy, Free-Living Elderly Population of Pakistan. Clinical Interventions in Aging, 7, 565-573.
https://doi.org/10.2147/CIA.S37158
[90]  Alam, I., Shivappa, N., Hebert, J.R., Pawelec, G. and Larbi, A. (2018) Relationships between the Inflammatory Potential of the Diet, Aging and Anthropometric Measurements in a Cross-Sectional Study in Pakistan. Nutrition and Healthy Aging, 4, 335-343.
https://doi.org/10.3233/NHA-180042
[91]  Alam, I., Larbi, A., Pawelec, G. and Paracha, P.I. (2011) Relationship between Anthropometric Variables and Nutrient Intake in Apparently Healthy Male Elderly Individuals: A Study from Pakistan. Nutrition Journal, 10, 111.
https://doi.org/10.1186/1475-2891-10-111
[92]  Alam, I., Larbi, A. and Pawelec, G. (2012) Nutritional Status Influences Peripheral Immune Cell Phenotypes in Healthy Men in Rural Pakistan. Immunity & Ageing, 9, 16.
https://doi.org/10.1186/1742-4933-9-16
[93]  Alam, I., Goldeck, D., Larbi, A. and Pawelec, G. (2013) Aging Affects the Proportions of T and B Cells in a Group of Elderly Men in a Developing Country—A Pilot Study from Pakistan. Age, 35, 1521-1530.
https://doi.org/10.1007/s11357-012-9455-1
[94]  Alam, I. and Pawelec, G. (2012) Aging, Nutrition and Immunity—Their Relationship and Interaction. Nutrition and Aging, 1, 151-165.
[95]  Alam, I., Ng, T.P. and Larbi, A. (2012) Does Inflammation Determine Whether Obesity Is Metabolically Healthy or Unhealthy? The Aging Perspective. Mediators of Inflammation, 2012, Article ID: 456456.
https://doi.org/10.1155/2012/456456

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133