Two pure hexagonal phases of titanium dioxide, anatase and rutile, were grown on c-cut Al2O3 substrates via pulsed-laser deposition by changing only the growth and annealing conditions, but without changing the substrate, target, or working gas. Purity of each phase was confirmed by x-ray diffraction, the quality of each film was studied using atomic force microscopy and scanning electron microscopy, and the interface between each substrate and film was studied using x-ray photoelectron spectroscopy. A binding layer of Ti2O3 was found to explain anatase growth under the very large lattice mismatch conditions.
References
[1]
Vegard, L. (1916) Results of Crystal Analysis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32, 65-96.
https://doi.org/10.1080/14786441608635544
[2]
Mincuzzi, G., Vesce, L., Reale, A., Di Carlo, A. and Brown, T.M. (2009) Efficient Sintering of Nanocrystalline Titanium Dioxide Films for Dye Solar Cells via Raster Scanning Laser. Applied Physics Letters, 95, Article ID: 103312.
https://doi.org/10.1063/1.3222915
[3]
Park, N.-G., van de Lagemaat, J. and Frank, A.J. (2000) Comparison of Dye-Sensitized Rutile-and Anatase-Based TiO2 Solar Cells. Journal of Physical Chemistry B, 104, 8989-8994. https://doi.org/10.1063/1.3222915
[4]
Di Fonzo, F., Casari, C.S., Russo, V., Brunella, M.F., Bassi, A.L. and Bottani, C.E. (2008) Hierarchically Organized Nanostructured TiO2 for Photocatalysis Applications. Nanotechnology, 20, Article ID: 015604.
https://doi.org/10.1088/0957-4484/20/1/015604
[5]
Luttrell, T., Halpegamage, S., Sutter, E. and Batzill, M. (2014) Photocatalytic Activity of Anatase and Rutile TiO2 Epitaxial Thin Film Grown by Pulsed Laser Deposition. Thin Solid Films, 564, 146-155. https://doi.org/10.1016/j.tsf.2014.05.058
[6]
Lin, H., Rumaiz, A.K., Schulz, M., Wang, D., Rock, R., Huang, C.P. and Shah, S.I. (2008) Photocatalytic Activity of Pulsed Laser Deposited TiO2 Thin Films. Materials Science and Engineering B, 151, 133-139.
https://doi.org/10.1016/j.mseb.2008.05.016
[7]
Roméas, V., Pichat, P., Guillard, C., Chopin, T. and Lehaut, C. (1999) Testing the Efficacy and the Potential Effect on Indoor Air Quality of a Transparent Self-Cleaning TiO2-Coated Glass through the Degradation of a Fluoranthene Layer. Industrial & Engineering Chemistry Research, 38, 3878-3885.
https://doi.org/10.1021/ie990326k
[8]
Bao, S.-J., Li, C.M., Zang, J.-F., Cui, X.-Q., Qiao, Y. and Guo, J. (2008) New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications. Advanced Functional Materials, 18, 591-599. https://doi.org/10.1002/adfm.200700728
[9]
Du, X., Wang, Y., Mu, Y., Gui, L., Wang, P. and Tang, Y. (2002) A New Highly Selective H2 Sensor Based on TiO2/PtO-Pt Dual-Layer Films. Chemistry of Materials, 14, 3953-3957. https://doi.org/10.1021/cm0201293
[10]
Gyorgy, E., Socol, G., Axente, E., Mihailescu, I.N., Ducu, C. and Ciuca, S. (2005) Anatase Phase TiO2 Thin Films Obtained by Pulsed Laser Deposition for Gas Sensing Applications. Applied Surface Science, 247, 429-433.
https://doi.org/10.1016/j.apsusc.2005.01.074
[11]
Xie, Q., Deduytsche, D., Schaekers, M., Caymax, M., Delabie, A., Qu, X.-P. and Detavernier, C. (2010) Implementing TiO2 as Gate Dielectric for Ge-Channel Complementary Metaloxide-Semiconductor Devices by Using HfO2/GeO2 Interlayer. Applied Physics Letters, 97, Article ID: 112095. https://doi.org/10.1063/1.3490710
[12]
Campbell, S.A., Gilmer, D.C., Wang, X.-C., Hsieh, M.-T., Kim, H.-S., Gladfelter, W.L. and Yan, J. (1997) MOSFET Transistors Fabricated with High Permitivity TiO2 Dielectrics. IEEE Transactions on Electron Devices, 44, 104-109.
https://doi.org/10.1109/16.554800
[13]
Kim, J.Y., Jung, H.S., No, J.H., Kim, J.-R. and Hong, K.S. (2006) Influence of Anatase-Rutile Phase Transformation on Dielectric Properties of Sol-Gel Derived TiO2 Thin Films. Journal of Electroceramics, 16, 447-451.
https://doi.org/10.1007/s10832-006-9895-z
[14]
Kubo, W., Murakoshi, K., Kitamura, T., Yoshida, S., Haruki, M., Hanabusa, K., Shirai, H., Wada, Y. and Yanagida, S. (2001) Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine. Journal of Physical Chemistry B, 105, 12809-12815. https://doi.org/10.1021/jp012026y
[15]
Anderson, M.A., Gieselmann, M.J. and Xu, Q. (1988) Titania and Alumina Ceramic Membranes. Journal of Membrane Science, 39, 243-258.
https://doi.org/10.1016/S0376-7388(00)80932-1
[16]
Wicaksana, D., Kobayashi, A. and Kinbara, A. (1992) Process Effects on Structural Properties of TiO2 Thin Films by Reactive Sputtering. Journal of Vacuum Science & Technology A, 10, 1479-1482. https://doi.org/10.1116/1.578269
[17]
Li, D., Haneda, H., Hishita, S. and Ohashi, N. (2005) Visible-Light-Driven N-F-Codoped TiO2 Photocatalysts. 1. Synthesis by Spray Pyrolysis and Surface Characterization. Chemistry of Materials, 17, 2588-2595.
https://doi.org/10.1021/cm049100k
[18]
Djaoued, Y., Badilescu, S., Ashrit, P.V., Bersani, D., Lottici, P.P. and Bruning, R. (2002) Low Temperature Sol-Gel Preparation of Nanocrystalline TiO2 Thin Films. Journal of Sol-Gel Science and Technology, 24, 247-254.
https://doi.org/10.1023/A:1015305328932
[19]
Lee, D.H., Cho, Y.S., Yi, W.I., Kim, T.S., Lee, J.K. and Jung, H.J. (1995) Metalorganic Chemical Vapor Deposition of TiO2:N Anatase Thin Film on Si Substrate. Applied Physics Letters, 66, 815-816. https://doi.org/10.1063/1.113430
[20]
Luca, D., Macovei, D. and Teodorescu, C.-M. (2006) Characterization of Titania Thin Films Prepared by Reactive Pulsed-Laser Ablation. Surface Science, 600, 4342-4346.
https://doi.org/10.1016/j.susc.2006.01.162
[21]
Gyorgy, E., Del Pino, A.P., Sauthier, G., Figueras, A., Alsina, F. and Pascual, J. (2007) Structural, Morphological and Local Electric Properties of TiO2 Thin Films Grown by Pulsed Laser Deposition. Journal of Physics D: Applied Physics, 40, 5246-5251. https://doi.org/10.1088/0022-3727/40/17/035
[22]
Hsieh, C.C., Wu, K.H., Juang, J.Y., Uen, T.M., Lin, J.Y. and Gou, Y.S. (2002) Monophasic TiO2 Films Deposited on SrTiO3 (100) by Pulsed Laser Ablation. Journal of Applied Physics, 92, 2518-2523. https://doi.org/10.1063/1.1499522
[23]
Ohshima, T., Nakashima, S., Ueda, T., Kawasaki, H., Suda, Y. and Ebihara, K. (2006) Laser Ablated Plasma Plume Characteristics for Photocatalyst TiO2 Thin Films Preparation. Thin Solid Films, 506, 106-110.
https://doi.org/10.1016/j.tsf.2005.08.042
[24]
Dzibrou, D., Grishin, A.M. and Kawasaki, H. (2008) Pulsed Laser Deposited TiO2 Films: Tailoring Optical Properties. Thin Solid Films, 516, 8697-8701.
https://doi.org/10.1016/j.tsf.2008.05.010
[25]
Long, H., Yang, G., Chen, A., Li, Y. and Lu, P. (2008) Growth and Characteristics of Laser Deposited Anatase and Rutile TiO2 Films on Si substrates. Thin Solid Films, 517, 745-749. https://doi.org/10.1016/j.tsf.2008.08.179
[26]
Kitazawa, S.-I., Choi, Y., Yamamoto, S. and Yamaki, T. (2006) Rutile and Anatase Mixed Crystal TiO2 Thin Films Prepared by Pulsed Laser Deposition. Thin Solid Films, 515, 1901-1904. https://doi.org/10.1016/j.tsf.2006.07.032
[27]
Le Boulbar, E., Millon, E., Boulmer-Leborgne, C., Cachoncinlle, C., Hakim, B. and Ntsoenzok, E. (2014) Optical Properties of Rare Earth-Doped TiO2 Anatase and Rutile Thin Films Grown by Pulsed-Laser Deposition. Thin Solid Films, 553, 13-16.
https://doi.org/10.1016/j.tsf.2013.11.032
[28]
Choi, Y., Yamamoto, S., Umebayashi, T. and Yoshikawa, M. (2004) Fabrication and Characterization of Anatase TiO2 Thin Film on Glass Substrate Grown by Pulsed Laser Deposition. Solid State Ionics, 172, 105-108.
https://doi.org/10.1016/j.ssi.2004.03.014
[29]
Janisch, R., Gopal, P. and Spaldin, N.A. (2005) Transition Metal-Doped TiO2 and ZnO-Present Status of the Field. Journal of Physics: Condensed Matter, 17, R657-R689. https://doi.org/10.1088/0953-8984/17/27/R01
[30]
Murugesan, S., Kuppusami, P., Parvathavarthini, N. and Mohandas, E. (2007) Pulsed Laser Deposition of Anatase and Rutile TiO2 Thin Films. Surface and Coatings Technology, 201, 7713-7719. https://doi.org/10.1016/j.surfcoat.2007.03.004
[31]
Djerdj, I. and Tonejc, A.M. (2006) Structural Investigations of Nanocrystalline TiO2 Samples. Journal of Alloys and Compounds, 413, 159-174.
https://doi.org/10.1016/j.jallcom.2005.02.105
[32]
Fukuda, K., Fujii, I. and Kitoh, R. (1993) Molecular Dynamics Study of the TiO2 (Rutile) and TiO2-ZrO2 Systems. Acta Crystallographica B, 49, 781-783.
https://doi.org/10.1107/S010876819300093X
[33]
Di Paola, A., Bellardita, M. and Palmisano, L. (2013) Brookite, the Least Known TiO2 Photocatalyst. Catalysts, 3, 36-73. https://doi.org/10.3390/catal3010036
[34]
Hu, W., Li, L., Li, G., Tang, C. and Sun, L. (2009) High-Quality Brookite TiO2 Flowers: Synthesis, Characterization, and Dielectric Performance. Crystal Growth and Design, 9, 3676-3682. https://doi.org/10.1021/cg9004032
[35]
Moridi, A., Ruan, H., Zhang, L.C. and Liu, M. (2013) Residual Stresses in Thin Film Systems: Effects of Lattice Mismatch, Thermal Mismatch and Interface Dislocations. International Journal of Solids and Structures, 50, 3562-3569.
https://doi.org/10.1016/j.ijsolstr.2013.06.022
[36]
Gorbenko, O.Y., Samoilenkov, S.V., Graboy, I.E. and Kaul, A.R. (2002) Epitaxial Stabilization of Oxides in Thin Films. Chemistry of Materials, 14, 4026-4043.
https://doi.org/10.1021/cm021111v
[37]
Dobrovinskaya, E.R., Lytvynov, L.A. and Pishchik, V. (2009) Sapphire: Material, Manufacturing, Applications. Springer Science & Business Media, New York.
[38]
Reeber, R.R. and Wang, K. (2000) Lattice Parameters and Thermal Expansion of Important Semiconductors and Their Substrates. Symposium T—Wide-Bandgap Electronic Devices, 622, T6.35.1-T6.35.6.
[39]
Blakemore, J.S. (1982) Semiconducting and Other Major Properties of Gallium Arsenide. Journal of Applied Physics, 53, R123-R181. https://doi.org/10.1063/1.331665
[40]
Howard, C.J., Kennedy, B.J. and Chakoumakos, B.C. (2000) Neutron Powder Diffraction Study of Rhombohedral Rare-Earth Aluminates and the Rhombohedral to Cubic Phase Transition. Journal of Physics: Condensed Matter, 12, 349-365.
https://doi.org/10.1088/0953-8984/12/4/301
[41]
Kawamura, K., Yashima, M., Fujii, K., Omoto, K., Hibino, K., Yamada, S., Hester, J.R., Avdeev, M., Miao, P., Torii, S. and Kamiyama, T. (2015) Structural Origin of the Anisotropic and Isotropic Thermal Expansion of K2NiF4-Type LaSrAlO4 and Sr2TiO4. Inorganic Chemistry, 54, 3896-3904.
https://doi.org/10.1021/acs.inorgchem.5b00102
[42]
Hossinger, A. (2000) Simulation of Ion Implantation for ULSI Technology. PhD Dissertation, Vienna University of Technology, Wien.
[43]
Watanabe, H., Yamada, N. and Okaji, M. (2004) Linear Thermal Expansion Coefficient of Silicon from 293 to 1000 K. International Journal of Thermophysics, 25, 221-236. https://doi.org/10.1023/B:IJOT.0000022336.83719.43
[44]
Ackermann, R.J. and Sorrell, C.A. (1974) Thermal Expansion and the High-Low Transformation in Quartz. I. High-Temperature X-Ray Studies. Journal of Applied Crystallography, 7, 461-467. https://doi.org/10.1107/S0021889874010211
[45]
Schmidbauer, M., Kwasniewski, A. and Schwarzkopf, J. (2012) High-Precision Absolute Lattice Parameter Determination of SrTiO3, DyScO3 and NdGaO3 Single Crystals. Acta Crystallographica B, 68, 8-14.
https://doi.org/10.1107/S0108768111046738
[46]
de Ligny, D. and Richet, P. (1996) High-Temperature Heat Capacity and Thermal Expansion of SrTiO3 and SrZrO3 Perovskites. Physical Review B, 53, 3013-3022.
https://doi.org/10.1103/PhysRevB.53.3013
[47]
Wood, R.M. (1962) The Lattice Constants of High Purity Alpha Titanium. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 80, 783-787.
[48]
Spreadborough, J. and Christian, J.W. (1959) The Measurement of the Lattice Expansion of Debye Temperatures of Titanium and Silver by X-Ray Methods. Proceedings of the Physical Society, 74, 609-615.
https://doi.org/10.1088/0370-1328/74/5/314
[49]
Kawasaki, M., Takahashi, K., Maeda, T., Tsuchiya, R., Shinhara, M., Ishiyama, O., Yonezawa, T., Yoshimoto, M. and Koinuma, H. (1994) Atomic Control of the SrTiO3 Crystal Surface. Science, 266, 1540-1542.
https://doi.org/10.1126/science.266.5190.1540
[50]
Koster, G., Kropman, B.L., Rijnders, G.J.H.M., Blank, D.H.A. and Rogalla, H. (1998) Quasi-Ideal Strontium Titanate Crystal Surfaces through Formation of Strontium Hydroxide. Applied Physics Letters, 73, 2920-2922.
https://doi.org/10.1063/1.122630
[51]
Kennedy, R.J. and Stampe, P.A. (2003) The Influence of Lattice Mismatch and Film Thickness on the Growth of TiO2 on LaAlO3 and SrTiO3 Substrates. Journal of Crystal Growth, 252, 333-342. https://doi.org/10.1016/S0022-0248(02)02514-9
[52]
Luo, Y.-R. (2007) Comprehensive Handbook of Chemical Bond Energies. CRC Press, Boca Raton. https://doi.org/10.1201/9781420007282
[53]
Gouma, P.I. and Mills, M.J. (2001) Anatase-to-Rutile Transformation in Titania Powders. Journal of the American Ceramic Society, 84, 619-622.
https://doi.org/10.1111/j.1151-2916.2001.tb00709.x