Environmental dissemination of antimicrobial
resistance genes may occur through agricultural residues, such as animal
manure. We studied the resistome of 16 pool samples of animal manure (pig
slurry [n = 8] and poultry manure [n = 8]), and 16 soil samples (manure-amended
[n = 8] and nonmanure-amended [n = 8]). All samples were collected in central
Spain. Detection was based on 18 selected antimicrobial resistance genes
(ARGs). The most commonly detected genes in animal manure were sul1(16/16), sul2 (16/16), tet(A)
(16/16), aadA (16/16), tet(B)
(15/16), and str (15/16). Genes blaTEM (7/8), mecA (6/8), vanA (5/8) and qnrB (4/8)
were more frequently detected in chicken manure, whereas pig slurry samples
presented higher levels of tet(C) (8/8) and tet(M) (8/8). Out of the
four genes selected for their clinical relevance, three—blaCTX-M
Lupo, A., Coyne, S. and Berendonk, T.U. (2012) Origin and Evolution of Antibiotic Resistance: The Common Mechanisms of Emergence and Spread in Water Bodies. Frontiers in Microbiology, 3, 18. https://doi.org/10.3389/fmicb.2012.00018
[3]
Zhu, Y.G., Johnson, T.A., Su, J.Q., Qiao, M., Guo, G.X., Stedtfeld, R.D., et al. (2013) Diverse and Abundant Antibiotic Resistance Genes in Chinese Swine Farms. Proceedings of the National Academy of Sciences of the United States of America, 110, 3435-3440. https://doi.org/10.1073/pnas.1222743110
[4]
Davies, J. and Davies, D. (2010) Origins and Evolution of Antibiotic Resistance. Microbiology and Molecular Biology Reviews, 74, 417-433.
https://doi.org/10.1128/MMBR.00016-10
[5]
Rolain, J.M., Fancello, L., Desnues, C. and Raoult, D. (2011) Bacteriophages as Vehicles of the Resistome in Cystic Fibrosis. Journal of Antimicrobial Chemotherapy, 66, 2444-2447. https://doi.org/10.1093/jac/dkr318
[6]
Blaser, M.J. and Falkow, S. (2009) What Are the Consequences of the Disappearing Human Microbiota? Nature Reviews Microbiology, 7, 887-894.
https://doi.org/10.1038/nrmicro2245
[7]
Gillings, M.R. (2013) Evolutionary Consequences of Antibiotic Use for the Resistome, Mobilome and Microbial Pangenome. Frontiers in Microbiology, 4, 4.
https://doi.org/10.3389/fmicb.2013.00004
[8]
European Commission (2003) Regulation EC No 1831/2003 of the European Parliament and Council of 22 Septeber 2003 on Additives for Use in Animal Nutrition. Official Journal of the European Union, L268, 29-43.
[9]
Sarmah, A.K., Meyer, M.T. and Boxall, A.B.A. (2006) A Global Perspective on the Use, Sales, Exposure Pathways, Occurrence, Fate and Effects of Veterinary Antibiotics (VAs) in the Environment. Chemosphere, 65, 725-759.
https://doi.org/10.1016/j.chemosphere.2006.03.026
[10]
Heuer, H., Schmitt, H. and Smalla, K. (2011) Antibiotic Resistance Gene Spread Due to Manure Application on Agricultural Fields. Current Opinion in Microbiology, 14, 236-243. https://doi.org/10.1016/j.mib.2011.04.009
[11]
Binh, C.T., Heuer, H., Kaupenjohann, M. and Smalla, K. (2008) Piggery Manure Used for Soil Fertilization Is a Reservoir for Transferable Antibiotic Resistance Plasmids. FEMS Microbiology Ecology, 66, 25-37.
https://doi.org/10.1111/j.1574-6941.2008.00526.x
[12]
Martínez, J.L. (2008) Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science, 321, 365-367. https://doi.org/10.1126/science.1159483
[13]
Cheng, W., Chen, H., Su, C. and Yan, S. (2013) Abundance and Persistence of Antibiotic Resistance Genes in Livestock Farms: A Comprehensive Investigation in Eastern China. Environment International, 61, 1-7.
https://doi.org/10.1016/j.envint.2013.08.023
[14]
Shaw, K.J., Rather, P.R., Hare, R.S. and Miller, G.H. (1993) Molecular Genetics of Aminoglycoside Resistance Genes and Familial Relationships of the Aminoglycoside-Modifying Enzymes. Microbiological Reviews, 57, 138-163.
[15]
Fluit, A.C. and Schmitz, F.J. (2004) Resistance Integrons and Super-Integrons. Clinical Microbiology and Infection, 10, e272-e288.
[16]
Adelowo, O.O., Fagade, O.E. and Agerso, Y. (2014) Antibiotic Resistance and Resistance Genes in Escherichia coli from Poultry Farms, Southwest Nigeria. The Journal of Infection in Developing Countries, 8, 1103-1112.
https://doi.org/10.3855/jidc.4222
[17]
Commission of the European Communities (1994) Amending Annexes I, II, III and IV of Council Regulation No. 2377/90 Laying down a Community Procedure for the Establishment of Maximum Residue Limits of Veterinary Medicinal Products in Foodstuffs of Animal Origin. Official Journal of the European Communities, 156, 6-7.
[18]
Chen, S., Zhao, S., White, D.G., Schroeder, C.M., Lu, R., Yang, H., et al. (2004) Characterization of Multiple-Antimicrobial-Resistant Salmonella Serovars Isolated from Retail Meats. Applied and Environmental Microbiology, 70, 1-7.
https://doi.org/10.1128/AEM.70.1.1-7.2004
[19]
Gow, S.P., Waldner, C.L., Harel, J. and Boerlin, P. (2008) Associations between Antimicrobial Resistance Genes in Fecal Generic Escherichia coli Isolates from Cow-Calf Herds in Western Canada. Applied and Environmental Microbiology, 74, 3658-3666. https://doi.org/10.1128/AEM.02505-07
[20]
Huang, S.Y., Dai, L., Xia, L.N., Du, X.D., Qi, Y.H., Liu, H.B., et al. (2009) Increased Prevalence of Plasmid-Mediated Quinolone Resistance Determinants in Chicken Escherichia coli Isolates from 2001 to 2007. Foodborne Pathogens and Disease, 6, 1203-1209. https://doi.org/10.1089/fpd.2009.0348
[21]
Xie, R., Huo, S., Li, Y., Chen, L., Zhang, F. and Wu, X. (2014) Molecular Epidemiological Survey on Quinolone Resistance Genotype and Phenotype of Escherichia coli in Septicemic Broilers in Hebei, China. Poultry Science, 93, 335-339.
https://doi.org/10.3382/ps.2013-03522
[22]
Coque, T.M., Baquero, F. and Cantón, R. (2008) Increasing Prevalence of ESBL-Producing Enterobacteriaceae in Europe. Eurosurveillance, 13, pii: 19044.
[23]
Bonnet, R. (2004) Growing Group of Extended-Spectrum Beta-Lactamases: The CTX-M Enzymes. Antimicrobial Agents and Chemotherapy, 48, 1-14.
https://doi.org/10.1128/AAC.48.1.1-14.2004
[24]
Mudd, A. (1996) Vancomycin Resistance and Avoparcin. The Lancet, 347, 1412.
https://doi.org/10.1016/S0140-6736(96)91055-7
[25]
European Commission (1997) Commission Directive 97/6/EC. Official Journal of the European Communities, 35, 11-13.
[26]
Klare, I., Badstübner, D., Konstabel, C., Bohme, G., Claus, H. and Witte, W. (1999) Decreased Incidence of vanA-Type Vancomycin-Resistant Enterococci Isolated from Poultry Meat and from Fecal Samples of Humans in the Community after Discontinuation of Avoparcin Usage in Animal Husbandry. Microbial Drug Resistance, 5, 45-52. https://doi.org/10.1089/mdr.1999.5.45
[27]
Tzavaras, I., Siarkou, V.I., Zdragas, A., Kotzamanidisa, C., Vafeas, G., Bourtzi-Hatzopoulou, E., et al. (2012) Diversity of vanA-Type Vancomycin-Resistant Enterococcus faecium Isolated from Broilers, Poultry Slaughterers and Hospitalized Humans in Greece. Journal of Antimicrobial Chemotherapy, 67, 1811-1818.
https://doi.org/10.1093/jac/dks166
[28]
Colomer-Lluch, M., Imamovic, L., Jofre, J. and Muniesa, M. (2011) Bacteriophages Carrying Antibiotic Resistance Genes in Fecal Waste from Cattle, Pigs, and Poultry. Antimicrobial Agents and Chemotherapy, 55, 4908-4911.
https://doi.org/10.1128/AAC.00535-11
[29]
Pruden, A., Pei, R., Storteboom, H. and Carlson, K.H. (2006) Antibiotic Resistance Genes as Emerging Contaminants: Studies in Northern Colorado. Environmental Science & Technology, 40, 7445-7450. https://doi.org/10.1021/es060413l
[30]
Yang, H., Byelashov, O.A., Geornaras, I., Goodridge, L.D., Nightingale, K.K., Belk, K.E., et al. (2010) Presence of Antibiotic-Resistant Commensal Bacteria in Samples from Agricultural, City, and National Park Environments Evaluated by Standard Culture and Real-Time PCR Methods. Canadian Journal of Microbiology, 56, 761-770. https://doi.org/10.1139/W10-060
[31]
Binh, C.T.T., Heuer, H., Gomes, N.C., Kotzerke, A., Fulle, M., Wilke, B.M., et al. (2007) Short-Term Effects of Amoxicillin on Bacterial Communities in Manured Soil. FEMS Microbiology Ecology, 62, 290-302.
https://doi.org/10.1111/j.1574-6941.2007.00393.x
[32]
Dalkmann, P., Broszat, M., Siebe, C., Willaschek, E., Sakinc, T., Huebner, J., et al. (2012) Accumulation of Pharmaceuticals, Enterococcus, and Resistance Genes in Soils Irrigated with Wastewater for Zero to 100 Years in Central Mexico. PLoS ONE, 7, e45397. https://doi.org/10.1371/journal.pone.0045397
[33]
Mindlin, S.Z., Soina, V.S., Petrova, M.A. and Gorlenko, Zh.M. (2008) Isolation of Antibiotic Resistance Bacterial Strains from Eastern Siberia Permafrost Sediments. Russian Journal of Genetics, 44, 27-34. https://doi.org/10.1134/S1022795408010043
[34]
Ji, X., Shen, Q., Liu, F., Ma, J., Xu, G., Wang, Y., et al. (2012) Antibiotic Resistance Gene Abundances Associated with Antibiotics and Heavy Metals in Animal Manures and Agricultural Soils Adjacent to Feedlots in Shanghai, China. Journal of Hazardous Materials, 235-236, 178-185.
https://doi.org/10.1016/j.jhazmat.2012.07.040
[35]
Devarajan, N., Laffite, A., Mulaji, C.K., Otamonga, J.P., Mpiana, P.T., Mubedi, J.I., et al. (2016) Occurrence of Antibiotic Resistance Genes and Bacterial Markers in a Tropical River Receiving Hospital and Urban Wastewaters. PLoS ONE, 11, e0149211. https://doi.org/10.1371/journal.pone.0149211
[36]
Doi, Y. and Arakawa, Y. (2007) 16S Ribosomal RNA Methylation: Emerging Resistance Mechanism against Aminoglycosides. Clinical Infectious Diseases, 45, 88-94.
https://doi.org/10.1086/518605
[37]
Edelstein, M., Pimkin, M., Dmitrachenko, T., Semenov, V., Kozlova, N., Gladin, D., et al. (2004) Multiple Outbreaks of Nosocomial Salmonellosis in Russia and Belarus Caused by a Single Clone of Salmonella enterica Serovar Typhimurium Producing an Extended-Spectrum Beta-Lactamase. Antimicrobial Agents and Chemotherapy, 48, 2808-2815. https://doi.org/10.1128/AAC.48.8.2808-2815.2004
[38]
Speldooren, V., Heym, B., Labia, R. and Nicolas-Chanoine, M.H. (1998) Discriminatory Detection of Inhibitor-Resistant Beta-Lactamases in Escherichia coli by Single-Strand Conformation Polymorphism-PCR. Antimicrobial Agents and Chemotherapy, 42, 879-884.
[39]
Yoo, M.H., Huh, M.D., Kim, E., Lee, H.H. and Do Jeong, H. (2003) Characterization of Chloramphenicol Acetyltransferase Gene by Multiplex Polymerase Chain Reaction in Multidrug-Resistant Strains Isolated from Aquatic Environments. Aquaculture, 217, 11-21. https://doi.org/10.1016/S0044-8486(02)00169-2
[40]
Francois, P., Pittet, D., Bento, M., Pepey, B., Vaudaux, P., Lew, D., et al. (2003) Rapid Detection of Methicillin-Resistant Staphylococcus aureus Directly from Sterile or Nonsterile Clinical Samples by a New Molecular Assay. Journal of Clinical Microbiology, 41, 254-260. https://doi.org/10.1128/JCM.41.1.254-260.2003
[41]
Marti, E. and Balcazar, J.L. (2013) Real-Time PCR Assays for Quantification of qnr Genes in Environmental Water Samples and Chicken Feces. Applied and Environmental Microbiology, 79, 1743-1745. https://doi.org/10.1128/AEM.03409-12
[42]
Jun, L.J., Jeong. J.B.; Huh, M.D., Chung, J.K., Choi, D.L., Lee, C.H., et al. (2004) Detection of Tetracycline-Resistance Determinants by Multiplex Polymerase Chain Reaction in Edwardsiella tarda Isolated from Fish Farms in Korea. Aquaculture, 240, 89-100. https://doi.org/10.1016/j.aquaculture.2004.07.025
[43]
Aminov, R.I., Chee-Sanford, J.C., Garrigues, N., Teferedegne, B., Krapac, I.J., White, B.A., et al. (2002) Development, Validation, and Application of PCR Primers for Detection of Tetracycline Efflux Genes of Gram-Negative Bacteria. Applied and Environmental Microbiology, 68, 1786-1793.
https://doi.org/10.1128/AEM.68.4.1786-1793.2002
[44]
Ng, L.K., Martin, I., Alfa, M. and Mulvey, M. (2001) Multiplex PCR for the Detection of Tetracycline Resistant Genes. Molecular and Cellular Probes, 15, 209-215.
https://doi.org/10.1006/mcpr.2001.0363
[45]
Aminov, R.I., Garrigues-Jeanjean, N. and Mackie, R.I. (2001) Molecular Ecology of Tetracycline Resistance: Development and Validation of Primers for Detection of Tetracycline Resistance Genes Encoding Ribosomal Protection Proteins. Applied and Environmental Microbiology, 67, 22-32.
https://doi.org/10.1128/AEM.67.1.22-32.2001
[46]
Wang, F.H., Qiao, M., Su, J.Q., Chen, Z., Zhou, X. and Zhu, Y.G. (2014) High Throughput Profiling of Antibiotic Resistance Genes in Urban Park Soils with Reclaimed Water Irrigation. Environmental Science & Technology, 48, 9079-9085.
https://doi.org/10.1021/es502615e
[47]
Pei, R., Kim, S.C., Carlson, K.H. and Pruden, A. (2006) Effect of River Landscape on the Sediment Concentrations of Antibiotics and Corresponding Antibiotic Resistance Genes (ARG). Water Research, 40, 2427-2435.
https://doi.org/10.1016/j.watres.2006.04.017
[48]
Bockelmann, U., Dorries, H.H., Ayuso-Gabella, M.N., Salgot de Marcay, M., Tandoi, V., Levantesi, C., et al. (2009) Quantitative PCR Monitoring of Antibiotic Resistance Genes and Bacterial Pathogens in Three European Artificial Groundwater Recharge Systems. Applied and Environmental Microbiology, 75, 154-163.
https://doi.org/10.1128/AEM.01649-08
[49]
Peak, N., Knapp, C.W., Yang, R.K., Hanfelt, M.M., Smith, M.S., Aga, D.S., et al. (2007) Abundance of Six Tetracycline Resistance Genes in Wastewater Lagoons at Cattle Feedlots with Different Antibiotic Use Strategies. Environmental Microbiology, 9, 143-151. https://doi.org/10.1111/j.1462-2920.2006.01123.x