Ce/BiVO4 nanocomposites photocatalyst was synthesized by direct feeding microwave synthesis method,using bismuth nitrate(Bi(NO3)3·5H2O), cerium?nitrate hexahydrate (Ce(NO3)3·6H2O) and ammonium metavanadate (NH4VO3) as raw material and sodium dodecyl sulfate(SDS) as surfactant. The X-ray diffractometer (XRD) and the scanning electron microscopy (SEM) technology were used to characterize the Ce/BiVO4 nanocomposites. We investigated the photocatalytic activity of the as-prepared photocatalyst, and methyl orange was used as organic pollutant. The results show that the Ce/BiVO4 nanocomposite was a good photocatalyst under visible light. In 100 ml of 5 mg/L methylene orange solution, when the catalyst calcined at 673 K was 0.1 g, hydrogen peroxide was 0.5
References
[1]
Min, Y.L., Zhang, K., Chen, Y.C. and Zhang, Y.G. (2012) Sonodegradation and Photo Degradation of Methyl Orange by InVO4/TiO2 Nanojunction Particles under Ultrasonic and Visible Light Irradiation. Ultrasonics Sonochemistry, 19, 883-889.
https://doi.org/10.1016/j.ultsonch.2011.12.015
[2]
Wang, J.X., Ruan, H., Li, W.J., et al. (2012) Highly Efficient Oxidation of Gaseous Benzene on Novel Ag3VO4/TiO2 Nanocomposite Photocatalysts under Visible and Simulated Solar Light Irradiation. The Journal of Physical Chemistry C, 116, 13935-13943. https://doi.org/10.1021/jp301355q
[3]
Wetchakun, N., Chaiwichain, S., Inceesungvorn, B., et al. (2012) BiVO4/CeO2 Nanocomposites with High Visible-Light-Induced Photocatalytic Activity. ACS Applied Materials & Interfaces, 4, 3718-3723. https://doi.org/10.1021/am300812n
[4]
Lu, Y., Luo, Y.S., Kong, D.Z., et al. (2012) Large-Scale Control Lable Synthesis Is of Dumbbell-Like BiVO4 Photocatalysts with Enhanced Visible-Light Photocatalytic Activity. Journal of Solid State Chemistry, 186, 255-260.
https://doi.org/10.1016/j.jssc.2011.12.003
[5]
Nithya, V.D., Kalai Selvan, R., Sanjeeviraja, C., et al. (2011) Synthesis and Characterization of FeVO4 Nanoparticles. Materials Research Bulletin, 46, 1654-1658.
https://doi.org/10.1016/j.materresbull.2011.06.005
[6]
Deshpande, P.A. and Madras, G. (2010) Photocatalytic Degradation of Phenol by Base Metal-Substituted Orthovanadates. Chemical Engineering Journal, 161, 136-145. https://doi.org/10.1016/j.materresbull.2011.06.005
[7]
Rakesh, K., Khaire, S., Bhange, D., et al. (2011) Role of Doping-Induced Photochemical and Microstructural Properties in the Photocatalytic Activity of InVO4 for Splitting of Water. Journal of Materials Science, 46, 5466-5476.
https://doi.org/10.1007/s10853-011-5489-5
[8]
Li, T.T., Zhao, L.H., He, Y.M., et al. (2013) Synthesis of g-C3N4/SmVO4 Composite Photocatalyst with Improved Visible Light Photocatalytic Activities in RhB Degradation. Applied Catalysis B: Environmental, 129, 255-263.
https://doi.org/10.1016/j.apcatb.2012.09.031
[9]
Xu, J., Hu, C.G., Liu, G.B., et al. (2011) Synthesis and Visible-Light Photocatalytic Activity of NdVO4 Nanowires. Journal of Alloys and Compounds, 509, 7968-7972.
https://doi.org/10.1016/j.jallcom.2011.05.051
[10]
Yao, W. F., Iwai, H. and Ye, J.H. (2008) Effects of Molybdenum Substitution on the Photocatalytic Behavior of BiVO4. Dalton Transactions, 11, 1426-1430.
https://doi.org/10.1039/b713338c
[11]
Eda, S., Fujishima, M. and Tada, H. (2012) Low Temperature-Synthesis of BiVO4 Nanorods Using Polyethylene Glycol as a Soft Template and the Visible-Light-Activity for Copper Acetylacetonate Decomposition. Applied Catalysis B: Environmental, 125, 288-293. https://doi.org/10.1016/j.apcatb.2012.05.038
[12]
Sun, W.T., Xie, M.Z., Jing, L.Q., et al. (2011) Synthesis of Large Surface Area Nano-Sized BiVO4 by an EDTA-Modified Hydrothermal Process and Its Enhanced Visible Photocatalytic Activity. Journal of Solid State Chemistry, 184, 3050-3054.
https://doi.org/10.1016/j.jssc.2011.09.013
[13]
Iwase, A. and Kudo, A. (2010) Photoelectrochemical Water Splitting Using Visible-Light-Responsive BiVO4 Fine Particles Prepared in an Aqueous Acetic Acid Solution. Journal of Materials Chemistry, 20, 7536-7542.
https://doi.org/10.1016/j.jssc.2011.09.013
Chen, L., Yin, S.F., Huang, R., et al. (2012) Hollow Peanut-Like m-BiVO4: Facile Synthesis and Solar-Light-Induced Photocatalytic Property. CrystEngComm, 14, 4217-4222. https://doi.org/10.1039/c2ce06684j
[16]
Xie, B.P., Zhang, H.X., Cai, P.X., et al. (2006) Simultaneous Photocatalytic Reduction of Cr (VI) and Oxidation of Phenol Over Monoclinic BiVO4 under Visible Light Irradiation. Chemosphere, 63, 956-963.
https://doi.org/10.1016/j.chemosphere.2005.08.064