全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis, Characterization and Analysis of Leishmanicide Ability of the Compound [Ru(Cl)3(H2O)2(gly)]

DOI: 10.4236/ojic.2017.74006, PP. 89-101

Keywords: Ruthenium, Glycine, Spectroscopy, Infrared TG/DTG and TG/DTA, Amino Acid

Full-Text   Cite this paper   Add to My Lib

Abstract:

Studies of coordinated compounds containing ruthenium (Ru2+ and Ru3+) have shown very effective in vitro results for the treatment of cancer and neglected diseases such as leishmaniasis. In this paper, we present the synthesis of the compound [Ru(Cl)3(H2O)2(gly)], which was characterized by spectroscopic (Ultraviolet-visibleand infrared) and thermal analysis (Thermogravimetry/Derived Thermogravimetry and Thermogravimetry/Differential Thermal Analysis). The analysis of the compound in the Ultraviolet-visibleregion showed a 290 nm band λmax (ε= 1.685 × 103 L·cm-1·mol-1), attributed to the ligand metal charge transfer (LMCT). The spectroscopy (IR) showed major vibrational bands at δa (-COO-) 1664 cm-1, δs (-COO-) 1388 cm-1, δs (\"\") 1571 cm-1 and δs (CCN) 889 cm-1. The thermal analysis by TG/DTG and TG-DTA indicated that the complex has five consecutive stages of decomposition: at 115°C (TG = 12.18%; Calculated = 11.32%) H2O (coordinating water), exothermic peaks at 230°C, 307°C, 440°C and 463°C due to oxidative decomposition of glycine, followed by the formation of RuClO residue at 665°C (TG = 41.11%; Calculated = 40.81%). The thermal characterization suggested the stoichiometry of the complex [RuCl3(H2O)2(gly)]. The antileishmanial capacity of this compound was also evaluated and the results indicated a 31% decrease in the parasitic infection of macrophages and a 1.5 to 3 fold reduction in the number of parasites per cell after treatment with 100 μg/mL of the complex. These results support the possible use of this compound as a therapeutic alternative against medical and veterinary parasites.

References

[1]  Sadler, P.J. (1991) Inorganic Chemistry and Drug Design. In: Sykes, A.G., Ed., Advances in Inorganic Chemistry, Academic Press, 36, 1-48.
https://doi.org/10.1016/S0898-8838(08)60035-5
[2]  Laila, H., Abdel Rahman, R.M., El-Khatib, L.A., Nassr, E. and Abu-Dief, A.M. (2013) Design, Characterization, Teratogenicity Testing, Antibacterial, Antifungal and DNA Interaction of Few High Spin Fe (II) Schiff Base Amino Acid Complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 111, 266-276.
https://doi.org/10.1016/j.saa.2013.03.061
[3]  Laila, H., Abdel Rahman, Ahmed, M., Abu-Dief, Ismael, M., Mohamed, M.A.A. and Hashem, N.A. (2016) Synthesis, Structure Elucidation, Biological Screening, Molecular Modeling and DNA Binding of Some Cu (II) Chelates Incorporating Imines Derived from Amino Acids. Journal of Molecular Structure, 1103, 233-244.
[4]  Katsaros, N. and Anagnostopoulou, A. (2002) Rhodium and Its Compounds as Potential Agents in Cancer Treatment. Critical Reviews in Oncology/Hematology, 42, 297-308.
https://doi.org/10.1016/S1040-8428(01)00222-0
[5]  Paula, W., Sinisterra, R., Santos, R. and Beraldo, H. (2005) A QuímicaInorganica no planejamento de fármacosusados no controle da hipertensão [Inorganic Chemistry in the Planning of Drugs Used to Control Hypertension]. Cadernos Temáticos de Química Nova na Escola, 6, 19-23.
[6]  Waxman, S. and Anderson, K.C. (2001) History of the Development of Arsenic Derivatives in Cancer Therapy. The Oncologist, 6, 3-10.
https://doi.org/10.1634/theoncologist.6-suppl_2-3
[7]  Gallori, E., Vettori, C., Alessio, E., Vilchez, F.G., Vilaplana, R., Orioli, P., Casini, A. and Messori, L. (2000) DNA as a Possible Target for Antitumor Ruthenium(III) Complexes. Archives of Biochemistry and Biophysics, 376, 156-162.
https://doi.org/10.1006/abbi.1999.1654
[8]  Clarke, M.J. (2003) Ruthenium Metallopharmaceuticals. Coordination Chemistry Reviews, 236, 209-233.
https://doi.org/10.1016/S0010-8545(02)00312-0
[9]  Suriano, G., Yew, S., Ferreira, P., Senz, J., Kaurah, P., Ford, J. M. and Oliveira, M.J (2005) Characterization of a Recurrent Germ Line Mutation of the E-Cadherin Gene: Implications for Genetic Testing and Clinical Management. Clinical Cancer Research, 11, 5401-5409.
https://doi.org/10.1158/1078-0432.CCR-05-0247
[10]  Clarke, M.J., Buchbinder, M. and Kelman, A.D. (1978) Binding of Pentaammineruthenium(III) to Double-Helical and Single-Stranded DNA. Inorganica Chimica Acta, 27, L87-L88.
https://doi.org/10.1016/S0020-1693(00)87238-2
[11]  Gupta, G., Gloria, S., Nongbri, S.L., Therrien, B. and Rao, K.M. (2011) Study of Complexes of Platinum Group Metals Containing Nitrogen Bases Derived from Pyridine Aldehydes: Interesting Molecular Structures with Unpredicted Bonding Modes of the Ligands. Journal of Organometallic Chemistry, 696, 2014-2022.
[12]  De Castro, P.F., de Lima, A.P., Vilanova-Costa, C.A.S.T., Pires, W.C., Ribeiro, A.D.S.B.B., Pereira, L.C.G., Pavanin, L.A., Santos, W.B. and de Paula Silveira-Lacerda, E. (2014) Cytotoxic Effects of the Compound Cis-Tetraammine (oxalato)ruthenium(III) Dithionate on K-562 Human Chronic Myelogenous Leukemia Cells. Springer Plus, 3, 301-310.
[13]  Vilanova-Costa, C.A.S.T., Porto, H.K.P., Pereira, F.D.C., de Lima, P.A., Santos, B.W. and Silveira-Lacerda, E.P. (2014) The Ruthenium Complexes Cis-(dichloro) Tetramineruthenium(III) Chloride and Cis-Tetraammine(oxalato)ruthenium(III) Dithionate Overcome Resistance Inducing Apoptosis on Human Lung Carcinoma Cells (A549). BioMetals, 27, 459-469.
https://doi.org/10.1007/s10534-014-9715-x
[14]  Vilanova-Costa, C.A.S.T., Porto, H.K.P., Pereira, L.C.G., Carvalho, B.P., Santos, W.B. and Silveira-Lacerda, E.P. (2015) MDR1 and Cytochrome P450 Gene-Expression Profiles as Markers of Chemosensitivity in Human Chronic Myelogenous Leukemia Cells Treated with Cisplatin and Ru(III) Metallocomplexes. Biological Trace Element Research, 163, 39-47.
https://doi.org/10.1007/s12011-014-0133-2
[15]  Arrais-Silva, W.W., Pinto, E.F., Rossi-Bergmann, B. and Giorgio, S. (2006) Hyperbaric Oxygen Therapy Reduces the Size of Leishmaniaamazonensis-Induced Soft Tissue Lesions in Mice. Acta Tropica, 98, 130-136.
[16]  Navarro, M., Oscar, A.C.S., Colmenares, I. and Marchan, E. (2006) Ruthenium Polypyridyl Complexes: Synthesis, Characterization and Biological Activity on Leishmania (L) Mexicana. Letters in Drug Design & Discovery, 3, 454-458.
https://doi.org/10.2174/157018006778194826
[17]  Barbiéri, C.L., Giorgio, S., Merjan, A. and Figueiredo, E.N. (1993) Glycosphingolipid Antigens of Leishmania (Leishmania) Amazonensisamastigotes Identified by Use of a Monoclonal Antibody. Infection and Immunity, 61, 2131-2137.
[18]  Giorgio, S., Linares, E., Ischiropoulos, H., Von Zuben, F.J., Yamada, A. and Augusto, O. (1998) In Vivo Formation of Electron Paramagnetic Resonance-Detectable Nitric Oxide and of Nitrotyrosine Is Not Impaired during Murine Leishmaniasis. Infection and Immunity, 66, 807-814.
[19]  Colhone, M.C., Arrais-Silva, W.W., Picoli, C. and Giorgio, S. (2004) Effect of Hypoxia on Macrophage Infection by Leishmania Amazonensis. Journal of Parasitology, 90, 510-515.
https://doi.org/10.1645/GE-3286
[20]  Degrossoli, A. and Giorgio, S. (2007) Functional Alterations in Macrophages after Hypoxia Selection. Experimental Biology and Medicine, 232, 88-95.
[21]  Chang, K. (1980) Human Cutaneous Lieshmania in a Mouse Macrophage Line: Propagation and Isolation of Intracellular Parasites. Science, 209, 1240-1242.
https://doi.org/10.1126/science.7403880
[22]  Linares, E., Augusto, O., Barão, S.C. and Giorgio, S. (2000) Leishmaniaamazonensis Infection Does Not Inhibit Systemic Nitric Oxide Levels Elicited by Lipopolysaccharide in Vivo. Journal of Parasitology, 86, 78-82.
https://doi.org/10.1645/0022-3395(2000)086[0078:LAIDNI]2.0.CO;2
[23]  Ayres, M., Ayres, J.R.M., Ayres, D. and Santos, A. (2007) BioEstat 5.3: Aplicações Estatísticasnas áreas das Ciências Biológicas e Médicas. Belém-PA Publicações Avulsas do Mamirauá. [Statistical Applications in the Areas of Biological and Medical Sciences.]
[24]  Yeh, A. and Taube, H. (1980) Acid Hydrolysis of Ethyl Glycinate Complex of Pentaammineruthenium(III). Journal of the American Chemical Society, 102, 4725-4729.
https://doi.org/10.1021/ja00534a028
[25]  Bento, M.L. and Tfouni, E. (1988) Spectra, Reduction Potentials, and Coordinated Pyrazinebasicities in the Ruthenium(II) Complexes Trans-Ru(NH3)4LL’n+1. Inorganic Chemistry, 27, 3410-3413.
https://doi.org/10.1021/ic00292a028
[26]  Kitamura, Y., Takenaka, N., Koyano, Y. and Nagaoka, M. (2014) Dual Approach to Vibrational Spectra in Solution: Microscopic Influence of Hydrogen Bonding to the State of Motion of Glycine in Water. Journal of Chemical Theory Computation, 10, 3369-3379.
https://doi.org/10.1021/ct500235a
[27]  Nakamoto, K. (1978) Infrared and Raman Spectra of Inorganic and Coordination Compounds.
[28]  Kohata, S., Sagara, K., Takada, H. and Ohyoshi, A. (1985) Thermal Reaction of Aquaammineruthenium(III) Complex with Amino Acid or Imidazole Derivative in the Solid State. Polyhedron, 4, 1059-1066.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133