全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fabrication and Characterization of PLD-Grown Bismuth Telluride (Bi2Te3) and Antimony Telluride (Sb2Te3) Thermoelectric Devices

DOI: 10.4236/jectc.2017.73006, PP. 63-77

Keywords: Thermoelectric Devices, Bismuth Telluride, Bi2Te3, Antimony Telluride, Sb2Te3, Pulsed Laser Deposition, PLD, Seebeck Effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report on the fabrication and characterization of multi-leg bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thermoelectric devices. The two materials were deposited, on top of SiO2/Si substrates, using Pulsed Laser Deposition (PLD). The SiO2 layer was used to provide insulation between the devices and the Si wafer. Copper was used as an electrical connector and a contact for the junctions. Four devices were built, where the Bi2Te3 and Sb2Te3 were deposited at substrate temperatures of 100°C, 200°C, 300°C and 400°C. The results show that the device has a voltage sensitivity of up to 146 μV/K and temperature sensitivity of 6.8 K/mV.

References

[1]  Willfahart, A. (2014) Screen Printed Thermoelectric Devices. Linköpings Universitet, SE-60174 Norrköping.
[2]  Tritt, T.M. (2002) Thermoelectric Materials: Principles, Structure, Properties, and Applications. Encyclopedia of Materials: Science and Technology, 1-11.
[3]  Nolas, G.S., Sharp, J. and Goldsmid, J. (2001) Thermoelectrics: Basic Principles and New Materials Developments. Springer, New York City.
https://doi.org/10.1007/978-3-662-04569-5
[4]  Chung, D.-Y., et al. (2000) CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications. Science, 287, 1024-1027.
https://doi.org/10.1126/science.287.5455.1024
[5]  Sharp, J.W., Sales, B.C., Mandrus, D.G. and Chakoumakos, B.C. (1999) Thermoelectric Properties of Tl2SnTe5 and Tl2GeTe5. Applied Physics Letters, 74, 21.
[6]  Dughaish, Z.H. (2002) Lead Telluride as a Thermoelectric Material for Thermoelectric Power Generation. Physica B: Condensed Matter, 322, 205-223.
https://doi.org/10.1016/S0921-4526(02)01187-0
[7]  Littleton IV, R.T., Tritt, T.M., Korzenski, M., Ketchum, D. and Kolis, J.W. (2001) Effect of Sb Substitution on the Thermoelectric Properties of the Group IV Pentatelluride Materials M1xYxTe5 (M1/4Hf, Zr and Ti). Physical Review B, 64, 121104-121107.
[8]  Uher, C., Yang, J., Hu, S., Morelli, D.T. and Meisner, G.P. (1999) Transport Properties of Pure and Doped MNiSn, M= (Zr, Hf). Physical Review B, 59, 8615-8621.
[9]  Nolas, G.S., Cohn, J.L., Slack, G.A. and Schujman, S.B. (1998) Semiconducting Ge Clathrates: Promising Candidates for Thermoelectric Applications. Applied Physics Letters, 73.
https://doi.org/10.1063/1.121747
[10]  Meng, J.F., Chandra Shekar, N.V., Badding, J.V. and Nolas, G.S. (2001) Threefold Enhancement of the Thermoelectric Figure of Merit for Pressure Tuned Sr8Ga16Ge30. Journal of Applied Physics, 89.
[11]  Snyder, G.J. and Toberer, E.S. (2008) Complex Thermoelectric Materials. Nature Materials, 7, 105-114.
https://doi.org/10.1038/nmat2090
[12]  Levin, E.M., Bud’ko, S.L. and Schmidt-Rohr, K. (2012) Enhancement of Thermopower of TAGS-85 High-Performance Thermoelectric Material by Doping with the Rare Earth Dy. Advanced Functional Materials, 22, 2766-2774.
https://doi.org/10.1002/adfm.201103049
[13]  Hu, Y.F., Sutter, E., Si, W.D. and Li, Q. (2005) Thermoelectric Properties and Microstructure of C-Axis-Oriented Ca3Co4O9 Thin Films on Glass Substrates. Applied Physics Letters, 87, Article ID: 171912.
https://doi.org/10.1063/1.2117615
[14]  Terasaki, I., Sasago, Y. and Uchinokura, K. (1997) Large Thermoelectric Power in NaCo2O4 Single Crystals. Physical Review B, Third Series, 56, R12685-R12687.
[15]  Skrabek, E.A. and Trimmer, D.S. (1995) Properties of the General TAGS System. In: Rowe, D.M., Ed., CRC Handbook of Thermoelectrics, CRC, Boca Raton, 267-275.
[16]  Shaikh, M. (2012) Structural, Electrical and Optical Characterization of Bismuth Telluride and Antimony Telluride Thin Films Deposited by Pulsed Laser Deposition. Graduate Thesis, CEET, Northern Illinois University.
[17]  Shaik, M. and Abdel-Motaleb, I.M. (2013) Effect of Substrate Temperature on PLD Grown Thin Film Bi2Te3 and Sb2Te3. IEEE EIT Conference Proceedings, Rapid City, 8-11 May 2013.
[18]  Shaik, M. and Abdel-Motaleb, I.M. (2013) Investigation of the Electrical Properties of PLD Grown Thin Film Bi2Te3 and Sb2Te3. IEEE EIT Conference Proceedings, Rapid City, 8-11 May 2013.
[19]  Shaik, M. and Abdel-Motaleb, I.M. (2013) Investigation of the Optical Properties of PLD Grown Thin Film Bi2Te3 and Sb2Te3. IEEE EIT Conference Proceedings, Rapid City, 8-11 May 2013.
[20]  Zhang, C. and Najafi, K. (2004) Fabrication of Thick Silicon Dioxide Layers for Thermal Isolation. Journal of Micromechanics and Microengineering, 14, 769-774.
https://doi.org/10.1088/0960-1317/14/6/002
[21]  Brochure for PLD System.
http://www.Neocera.com
[22]  Termentzidis, K., Pokropivny, A., Woda, M., Xiong, S.Y., Chumakov, Y., Cortona, P. and Volz, S. (2012) Structure Impact on the Thermal and Electronic Properties of Bismuth Telluride by Ab-Initio and Molecular Dynamics Calculations. Journal of Physics: Conference Series, 395, Article ID: 012114.
https://doi.org/10.1088/1742-6596/395/1/012114
[23]  Kimi, M.-Y. and Oh, T.-S. (2011) Processing and Thermoelectric Performance Characterization of Thin-Film Devices Consisting of Electrodeposited Bismuth Telluride and Antimony Telluride Thin-Film Legs. Journal of Electronic Materials, 40, 759-764.
https://doi.org/10.1007/s11664-011-1562-8
[24]  Wang, H. and Sen, M. (2009) Analysis of the 3-Omega Method for Thermal Conductivity Measurement. International Journal of Heat and Mass Transfer, 52, 2102-2109.
https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.020
[25]  Tsukada, T., Fukuyama, H. and Kobatake, H. (2007) Determination of Thermal Conductivity and Emissivity of Electromagnetically Levitated High-Temperature Droplet Based on the Periodic Laser-Heating Method: Theory. International Journal of Heat and Mass Transfer, 50, 3054-3061.
https://doi.org/10.1016/j.ijheatmasstransfer.2006.12.026
[26]  Mavrokefalos, A., Moore, A.L., Pettes, M.T., Shi, L., Wang, W. and Li, X. (2009) Thermoelectric and Structural Characterizations of Individual Electrodeposited Bismuth Telluride Nanowires. Journal of Applied Physics, 105, Article ID: 104318.
https://doi.org/10.1063/1.3133145
[27]  Choi, J.H., Young, D., Park, S.J., Choo, B.K. and Jang, J. (2003) Temperature Dependence of the Growth of Super-Grain Polycrystalline Silicon by Metal Induced Crystallization. Thin Film Solids, 427, 289-293.
https://doi.org/10.1016/S0040-6090(02)01150-1
[28]  Chen, C.-L., Chen, Y.-Y., Lin, S.-J., Ho, J.C., Lee, P.-C., Chen, C.-D. and Harutyunyan, S.R. (2010) Fabrication and Characterization of Electrodeposited Bismuth Telluride Films and Nanowires. The Journal of Physical Chemistry C, 114, 3385-3389.
https://doi.org/10.1021/jp909926z
[29]  Pradyumnan, P.P. and Swathikrishnan (2010) Thermoelectric Properties of Bi2Te3 and Sb2Te3 and Its Bilayer Thin Films. Indian Journal of Pure & Applied Physics, 48, 115-120.
[30]  Lee, H., Attar, A. and Weera, S. (2015) Performance Prediction of Commercial Thermoelectric Cooler Modules Using the Effective Material Properties. Journal of Electronic Materials, 44, 2157-2165.
https://doi.org/10.1007/s11664-015-3723-7
http://homepages.wmich.edu/~leehs/ME695/Thermoelectric%20Coolers%20for%20class.pdf
[31]  Abdel-Motaleb, I. and Qadri, S. Multi-Physics Numerical Simulation of Thermoelectric Devices. (In Preparation)
[32]  Venkatasubramanian, R., Siivola, E., Colpitts, T. and O’Quinn, B. (2001) Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit. Nature, 413, 597-602.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133