全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Discrete Differential Geometry and the Structural Study of Protein Complexes

DOI: 10.4236/ojdm.2017.73014, PP. 148-164

Keywords: Discrete Differential Geometry, n-Simplices, Hamiltonian Cycle Problem, Protein Complexes, Vector Bundle

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper proposes a novel four-dimensional approach to the structural study of protein complexes. In the approach, the surface of a protein molecule is to be described using the intersection of a pair of four-dimensional triangular cones (with multiple top vertexes). As a mathematical toy model of protein complexes, we consider complexes of closed trajectories of n-simplices (n=2,3,4...), where the design problem of protein complexes corresponds to an extended version of the Hamiltonian cycle problem. The problem is to find “a set of” closed trajectories of n-simplices which fills the n-dimensional region defined by a given pair of n+1 -dimensional triangular cones. Here we give a solution to the extended Hamiltonian cycle problem in the case of n=2 using the discrete differential geometry of triangles (i.e., 2-simplices).

References

[1]  Alberts, B. (1998) The Cell as a Collection of Protein Machines: Preparing the Next Generation of Molecular Biologists. Cell, 92, 291-294.
https://doi.org/10.1016/S0092-8674(00)80922-8
[2]  Ponstingl, H., Kabir, T., Gorse, D. and Thornton, J.M. (2005) Morphological Aspects of Oligomeric Protein Structures. Progress in Biophysics and Molecular Biology, 89, 9-35.
[3]  Pereira-Leal, J.B., Levy, E.D. and Teichmann, S.A. (2006) The Origins and Evolution of Functional Modules: Lessons from Protein Complexes. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 507-517.
https://doi.org/10.1098/rstb.2005.1807
[4]  Lee, D., Redfern, O. and Orengo, C. (2007) Predicting Protein Function from Sequence and Structure. Nature Reviews Molecular Cell Biology, 8, 995-1005.
https://doi.org/10.1038/nrm2281
[5]  Edelsbrunner, H. (2001) Geometry and Topology for Mesh Generation. Cambridge University Press, Cambridge.
https://doi.org/10.1017/CBO9780511530067
[6]  Gerstein, M and Richards, F.M. (2001) Protein Geometry: Volumes, Areas, and Distances. In: Rossman, M.G. and Arnold, E., Eds., The International Tables for Crystallography, Vol. F, Chap. 22, Kluwer, Dordrecht, 531-539.
[7]  Ban, Y.-E.A., Edelsbrunner, H. and Rudolph, J. (2006) Interface Surfaces for Protein-Protein Complexes. Journal of the ACM, 53, 361-378.
https://doi.org/10.1145/1147954.1147957
[8]  Levy, E.D., Pereira-Leal, J.B., Chothia, C. and Teichmann, S.A. (2006) 3D Complex: A Structural Classification of Protein Complexes. PLoS Computational Biology, 2, e155.
https://doi.org/10.1371/journal.pcbi.0020155
[9]  Perica, T., Marsh, J.A., Sousa, F.L., Natan, E., Colwell, L.J., Ahnert, S.E. and Teichmann, S.A. (2012) The Emergence of Protein Complexes: Quaternary Structure, Dynamics and Allostery. Biochemical Society Transactions, 40, 475-491.
https://doi.org/10.1042/BST20120056
[10]  Estrada, E. (2000) Characterization of 3D Molecular Structure. Chemical Physics Letters, 319, 713-718.
[11]  Li, J., Guo, J. and Shiu, W.C. (2014) The Normalized Laplacian Estrada Index of a Graph. Filomat, 28, 365-371.
https://doi.org/10.2298/FIL1402365L
[12]  Shang, Y. (2015) Laplacian Estrada and Normalized Laplacian Estrada Indices of Evolving Graphs. PLoS ONE, 10, e0123426.
https://doi.org/10.1371/journal.pone.0123426
[13]  Taylor, W.R. and Aszodi, A. (2004) Protein Geometry, Classification, Topology and Symmetry: A Computational Analysis of Structure. Taylor & Francis, UK.
[14]  Edelsbrunner, H., Letscher, D. and Zomorodian, A. (2002) Topological Persistence and Simplification. Discrete & Computational Geometry, 28, 511-533.
https://doi.org/10.1007/s00454-002-2885-2
[15]  Goriely, A., Hausrath, A. and Neukirch, S. (2008) The Differential Geometry of Proteins and Its Applications to Structure Determination. Biophysical Reviews and Letters, 3, 77-101.
https://doi.org/10.1142/S1793048008000629
[16]  Morikawa, N. (2014) Discrete Differential Geometry of n-Simplices and Protein Structure Analysis. Applied Mathematics, 5, 2458-2463.
https://doi.org/10.4236/am.2014.516237
[17]  Morikawa, N. (2016) Discrete Differential Geometry of Triangles and Escher-Style Trick Art. Open Journal of Discrete Mathematics, 6, 161-166.
https://doi.org/10.4236/ojdm.2016.63013
[18]  Woolfson, D.N., Bartlett, G.J., Burton, A.J., Heal, J.W., Niitsu, A., Thomson, A.R. and Wood, C.W. (2015) De Novo Protein Design: How Do We Expand into the Universe of Possible Protein Structures? Current Opinion in Structural Biology, 33, 16-26.
[19]  Huang, P.-S., Boyken, S.E. and Baker, D. (2016) The Coming of Age of de Novo Protein Design. Nature, 537, 320-327.
https://doi.org/10.1038/nature19946
[20]  Norn, C.H. and Andre, I. (2016) Computational Design of Protein Self-Assembly. Current Opinion in Structural Biology, 39, 39-45.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133