全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Education Web Information Retrieval and Classification with Big Data Analysis

DOI: 10.4236/ce.2016.718265, PP. 2868-2875

Keywords: Education Informatization, Big Data, Text Mining, Information Retrieval, Text Categorization, Web Categorization, Web Page Segmentation, Concept Semantic Space

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper discusses the text mining method to obtain the education web information rules. The method can be applied to words and parts of speech in texts to record the two-tier structure of automatic mining. On the basis of the initial discovery of the labeling rules, we put forward the linguistic features based on words to expand the application of the approaches. The web information retrieval mechanism is proposed based on web content segmentation. In addition, we build a rule matching method to improve performance of rule utilization, in terms of information of interest to the user and the extent to the interesting part. In conclusion, the use of automatic labeling rules can make part of the tagging accuracy rate reach a new height.

References

[1]  Baradwaj, B. K., & Pal, S. (2011). Mining Educational Big Data to Analyze Students’ Performance. International Journal of Advanced Computer Science and Applications, 2, 63-69.
[2]  Campos, R., Dias, G., Jorge, A. M. et al. (2015). Survey of Temporal Information Retrieval and Related Applications. ACM Computing Surveys (CSUR), 47, 15.
[3]  Dumais, S., Cutrell, E., Cadiz, J. J. et al. (2016). Stuff I’ve Seen: A System for Personal Information Retrieval and Re-Use. ACM SIGIR Forum, 49, 28-35.
https://doi.org/10.1145/2888422.2888425
[4]  Fan, W., & Bifet, A. (2013). Mining Big Data: Current Status, and Forecast to the Future. ACM sIGKDD Explorations Newsletter, 14, 1-5.
https://doi.org/10.1145/2481244.2481246
[5]  Ghorab, M. R., Zhou, D., O’Connor, A. et al. (2013). Personalised Information Retrieval: Survey and Classification. User Modeling and User-Adapted Interaction, 23, 381-443.
https://doi.org/10.1007/s11257-012-9124-1
[6]  Goeuriot, L., Jones, G. J. F., Kelly, L. et al. (2013). ShARe/CLEF eHealth Evaluation Lab 2013, Task 3: Information Retrieval to Address Patients’ Questions When Reading Clinical Reports. CLEF 2013 Online Working Notes, 8138.
[7]  Liu, H., & Motoda, H. (2012). Feature Selection for Knowledge Discovery and Big Data Mining. Berlin: Springer Science & Business Media.
[8]  Mukhopadhyay, A., Maulik, U., Bandyopadhyay, S., et al. (2014). A Survey of Multiobjective Evolutionary Methods for Data Mining: Part I. IEEE Transactions on Evolutionary Computation, 18, 4-19.
https://doi.org/10.1109/TEVC.2013.2290086
[9]  More, L. (2015). Analytical Study of Information Retrieval Techniques and Modified Model of Search Engine. International Journal on Computer Science and Engineering, 7, 57.
[10]  Shen, Y., He, X., Gao, J. et al. (2014). Learning Semantic Representations Using Convolutional Neural Networks for Web Search (pp. 373-374). Proceedings of the 23rd International Conference on World Wide Web, Seoul, 7-11 April 2014.
https://doi.org/10.1145/2567948.2577348
[11]  Tsytsarau, M., & Palpanas, T. (2012). Survey on Mining Subjective Big Data on the Web. Big Data Mining and Knowledge Discovery, 24, 478-514.
https://doi.org/10.1007/s10618-011-0238-6
[12]  Ting, S. L., See-To, E. W. K., & Tse, Y. K. (2013). Web Information Retrieval for Health Professionals. Journal of Medical Systems, 37, 1-14.
https://doi.org/10.1007/s10916-013-9946-3
[13]  Wu, X., Zhu, X., Wu, G. Q. et al. (2014). Big Data Mining with Big Bigdata. IEEE Transactions on Knowledge and Big Data Engineering, 26, 97-107.
https://doi.org/10.1109/TKDE.2013.109

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133