Detection and Characterization of β-Lactamase Encoding Genes in Carbapenem Non-Susceptible Gram-Negative Bacteria and Susceptibility of Isolates to Ceftazidime-Avibactam at a New York City Community Hospital
A surveillance study was undertaken to identify
prominent β-lactamase encoding genes
in 131carbapenem
non-susceptible gram-negative clinical isolatesat a New York City community hospital.KPC carbapenemases were
detected in 89% of Enterobacteriaceae as well as additional TEM, SHV, and CTX-M
class A enzymes. OXA-23 and OXA-24 were the prevalent class D carbapenemases
identified in Acinetobacter species.
One OXA-23 in M. morganii and one
OXA-48 in K. pneumoniae were also
identified. Among class C β-lactamases
CMY, ACT/MIR, DHA, and FOX were detected. The in vitro activity of ceftazidime-avibactam by E-test methodology
was tested with minimal inhibitory concentrations (MIC) of ≤3 μg/ml for 97.8%
of all Enterobacteriaceae, MIC50/90 of 16/>256 μg/ml for carbapenem
non-susceptible Acinetobacter, and
3/6 μg/ml for carbapenem non-susceptible Pseudomonas
aeruginosa. Periodic surveillance of isolates tocharacterize current and emerging β-lactamase genotypes present in local
isolates may help identify outbreak situations, provide assistance to infection
control and antibiotic stewardship programs, and potentially improve patient
outcomes.
References
[1]
Centers for Disease Control and Prevention (CDC) (2013) Antibiotic Resistance Threats in the United States. CDC, Atlanta.
[2]
Bush, K. (2013) The ABCD’s of β-Lactamase Nomenclature. Journal of Infection and Chemotherapy, 19, 549-559. https://doi.org/10.1007/s10156-013-0640-7
[3]
Check-MDR CT103 XL User Manual, Version 1.0, 1-08-2014 Check Points, Wegeningen, Netherlands.
[4]
Bogaerts, P., Cuzon, G., Evrard, S., Hoebeke, M., Naas, T. and Glupczynski, Y. (2016) Evaluation of a DNA Micro Array for Rapid Detection of the Most Prevalent Extended-Spectrum β-Lactamases, Plasmid-Mediated Cephalosporinases and Carbapenemases in Enterobacteriaceae, Pseudomonas and Acinetobacter. International Journal of Antimicrobial Agents, 48, 189-193. https://doi.org/10.1016/j.ijantimicag.2016.05.006
[5]
Cunningham, S.A., Vasoo, S. and Patel, R. (2016) Evaluation of the Check-Points Check MDR CT103 and CT103 XL Microarray Kits by Use of Preparatory Rapid Cell Lysis. Journal of Clinical Microbiology, 54, 1368-1371. https://doi.org/10.1128/JCM.03302-15
[6]
Urban, C., Bradford, P.A., Tuckman, M., Segal-Maurer, S., Wehbeh, W., Grenner, L., Colon-Urban, R., Mariano, N. and Rahal, J.J. (2008) Carbapenem-Resistant Escherichia coli Harboring Klebsiella pneumoniae Carbapenemase β-Lactamases Associated with Long-Term Care Facilities. Clinical Infectious Diseases, 46, e127-e130. https://doi.org/10.1086/588048
[7]
Tiruvury, H., Johnson, J.R., Mariano, N., Grenner, L., Colon-Urban, R., Erritouni, M., Wehbeh, W., Segal-Maurer, S., Rahal, J.J., Johnston, B. and Urban, C. (2012) Identification of CTX-M β-Lactamases among Escherichia coli from the Community in New York City. DiagMicrobiol Infect Dis, 72, 248-252. https://doi.org/10.1016/j.diagmicrobio.2011.11.008
[8]
Kopacz, J., Mariano, N., Colon-Urban, R., Sychangco, P., Wehbeh, W., Segal-Maurer, S., and Urban C (2013) Identification of Extended-Spectrum-β-Lactamase-Positive Klebsiella pneumoniae Urinary Tract Isolates Harboring KPC and CTX-M β-Lactamases in Nonhospitalized Patients. Antimicrob Agents Chemother, 57, 5166-5169. https://doi.org/10.1128/AAC.00043-13
[9]
Urban, C., Mariano, N., Bradford, P.A., Tuckman, M., Segal-Maurer, S., Wehbeh, W., Grenner, L., Colon-Urban, R., Johnston, B., Johnson, J.R. and Rahal, J.J. (2010) Identification of CTX-M β-Lactamases in Escherichia coli from Hospitalized Patients and Residents of Long-Term Care Facilities. Diagnostic Microbiology and Infectious Disease, 66, 402-406. https://doi.org/10.1016/j.diagmicrobio.2009.11.012
[10]
Österblad, M., Karah, N., Halkilahti, J., Sarkkinen, H., Uhlin, B.E. and Jalava, J. (2016) Rare Detection of the Acinetobacter Class D carbapenemase blaOXA-23 Gene in Proteus Mirabilis. Antimicrobial Agents and Chemotherapy, 60, 3243-3245. https://doi.org/10.1128/AAC.03119-15
[11]
La, M-V., Jureen, R., Lin, R.T.P. and Teo, J.W.P. (2014) Unusual Detection of an Acinetobacter Class D Carbapenemase Gene blaOXA-23, in a Clinical Escherichia coli Isolate. Journal of Clinical Microbiology, 52, 3822-3823. https://doi.org/10.1128/JCM.01566-14
[12]
Mammeri, H., Guillon, H., Eb, F. and Nordmann, P. (2010) Phenotypic and Biochemical Comparison of the Cabapenem-Hydrolyzing Activities of Five Plasmid-Borne AmpC β-lactamases. Antimicrobial Agents and Chemotherapy, 54, 4556-4560. http://dx.doi.org/10.1128/AAC.01762-09
[13]
Bradford, P.A, Urban, C., Mariano, N., Projan, S.J., Rahal, J.J. and Bush, K. (1997) Imipenem Resistance of Clinical Isolates of Klebsiella pneumoniae Results from ACT-1, a Plasmid Mediated AMP C Beta-Lactamase Combined with Loss of Membrane Porin Proteins. Antimicrobial Agents and Chemotherapy, 41, 563-569.
[14]
Ahmad, M., Urban, C., Mariano, N., Bradford, P., Calcagni, E., Projan, S., Bush, K. and Rahal, J.J. (1999) Clinical and Molecular Epidemiology Associated with Imipenem Resistant Klebsiella pneumoniae. Clinical Infectious Diseases, 29, 352-355. https://doi.org/10.1086/520214
[15]
Matsumura, Y., Tanaka, M., Yamamoto, M., Nagao, M., Machida, K., Ito, Y., Takakura, S., Ogawa, K., Yoshizawa, A., Fujimoto, Y., Oamoto, S., Uemoto, S. and Ichiyama, S. (2015) High Prevalence of Carbapenem Resistance among Plasmid-Mediated AmpC β-Lactamase-Producing Klebsiella pneumoniae during Outbreaks in Liver Transplantation Units. International Journal of Antimicrobial Agents, 45, 33-40. https://doi.org/10.1016/j.ijantimicag.2014.08.015
[16]
Abdallaha, M., Olafisoyea, O., Cortes, C., Urban, C., Landman, D. and Quale, J. (2015) Activity of Eravacycline against Enterobacteriaceae and Acinetobacter baumannii, Including 2 Multidrug-Resistant Isolates, from New York City. Antimicrobial Agents and Chemotherapy, 59, 1802-1805. https://doi.org/10.1128/AAC.04809-14
[17]
Adams-Haduch, J.M., Onuoha, E.O., Bogdanovich, T., Tian, G.B., Marschall, J., Urban, C.M., Spellberg, B.J., Rhee, D., Halstead, D.C., Pasculle, A.W. and Doi, Y. (2011) Molecular Epidemiology of Carbapenem-Nonsusceptible Acinetobacter baumannii in the United States. Journal of Clinical Microbiology, 49, 3849-3854. https://doi.org/10.1128/jcm.00619-11
[18]
Quale, J., Bratu, S., Gupta, J., and Landman, D. (2006) Interplay of Efflux System, ampC, and oprD Expression in Carbapenem Resistance of Pseudomonas aeruginosa Clinical Isolates. Antimicrobial Agents and Chemotherapy, 50, 1633-1641. https://doi.org/10.1128/AAC.50.5.1633-1641.2006
[19]
Castanheira, M., Mills, J.C., Costello, S.E., Jones, R.N., and Sader, H.S. (2015) Ceftazidime-Avibactam Activity Tested against Enterobacteriaceae Isolates from U.S. Hospitals (2011-2013) and Characterization of β-Lactamase-Producing Strains. Antimicrobial Agents and Chemotherapy, 59, 3509-3517. https://doi.org/10.1128/AAC.00163-15
[20]
Dupont, H., Gaillot, O., Goetgheluck, A.S., Plassart, C., Emond, J.P., Lecuru, M., Gaillard, N., Derdouri, S., Lemaire, B., Girard de Courtilles, M., Cattoir, V. and Mammeri, H. Molecular Characterization of Carbapenem-Nonsusceptible Enterobacterial Isolates Collected during a Prospective Interregional Survey in France and Susceptibility to the Novel Ceftazidime-Avibactam and Aztreonam-Avibactam Combinations. Antimicrobial Agents and Chemotherapy, 60, 215-221. https://doi.org/10.1128/AAC.01559-15
[21]
Shields, R.K., Clancy, C.J., Hao, B., Chen, L., Press, E.G., Iovine, N.M., Kreiswirth, B.N. and Nguyen, M.H. (2015) Effects of Klebsiella pneumoniae Carbapenemase Subtypes, Extended Spectrum β-Lactamases, and Porin Mutations on the in Vitro Activity of Ceftazidime-Avibactam against Carbapenem-Resistant K. pneumoniae. Antimicrobial Agents and Chemotherapy, 59, 5793-5797. https://doi.org/10.1128/AAC.00548-15
[22]
LaBombardi, V.J., Urban, C.M., Kreiswirth, B.N., Chen, L., Osorio, G., Kopacz, J., Labaze, G. and Segal-Maurer, S. (2015) Evaluation of Remel Spectra CRE Agar for Detection of Carbapenem-Resistant Bacteria from Rectal Swabs Obtained from Residents of a Long-Term-Care Facility. Journal of Clinical Microbiology, 53, 2823-2826. https://doi.org/10.1128/JCM.00789-15
[23]
Prasad, N., Labaze, G., Kopacz, J., Chwa, S., Platis, D., Pan, C.X., Russo, D., LaBombardi, V.J., Osorio, G., Pollack, S., Kreiswirth, B.N., Chen, L., Urban, C. and Segal-Maurer, S. (2016) Asymptomatic Rectal Colonization with Carbapenem-Resistant Enterobacteriaceae and Clostridium difficile among Residents of a Long-Term-Care Facility in New York City. American Journal of Infection Control, 44, 525-532. https://doi.org/10.1016/j.ajic.2015.11.021
[24]
Viau, R.A., Hujer, A.M., Marshall, S.H., Perez, F., Hujer, K.M., Brice-o, D.F., Dul, M., Jacobs, M.R., Grossberg, R., Toltzis, P. and Bonomo, R.A. (2012) “Silent” Dissemination of Klebsiella pneumoniae Isolates Bearing K. pneumoniae Carbapenemase in a Long-Term Care Facility for Children and Young Adults in Northeast Ohio. Clinical Infectious Diseases, 54, 1314-1321. https://doi.org/10.1093/cid/cis036
[25]
Sahin, K., Tekin, A., Ozdas, S., Akin, D., Yapislar, H., Dilek, A.R. and Sonmez, E. (2015) Evaluation of Carbapenem Resistance Using Phenotypic and Genotypic Techniques in Enterobacteriaceae. Annals of Clinical Microbiology and Antimicrobials, 14, 44. https://doi.org/10.1186/s12941-015-0105-1
[26]
Livermore, D.M., Andrews, J.M., Hawkey, P.M., Ho, P.L., Keness, Y., Doi, Y., Paterson, D. and Woodford, N. (2012) Are Susceptibility Tests Enough, or Should Laboratories Still See ESBLs and Carbapenemases Directly? Journal of Antimicrobial Chemotherapy, 67, 1569-1577. https://doi.org/10.1093/jac/dks088