全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Physicochemical, Biochemical and Instrumental Attributes and Consumer Acceptability of Dry-Fermented Sausages Elaborated with Combined Partial Substitutions of Sodium Chloride and Pork Backfat

DOI: 10.4236/fns.2016.714119, PP. 1297-1314

Keywords: Dry-Fermented Sausage, Combined Partial Substitutions, KCl, Sunflower Oil, Oxidation

Full-Text   Cite this paper   Add to My Lib

Abstract:

We performed 6 fabrications of dry-fermented sausages to investigate, at laboratory scale, the effects of combined partial substitutions of sodium chloride by potassium chloride and pork backfat by sunflower oil on key physical-chemical and biochemical parameters, instrumental colour and texture measurements, and the consumer acceptability of the end-products. Regarding the physical-chemical parameters, statistical analysis of results showed that final product weight loss was impacted by fat content and use of sunflower oil; final mean water activity value was only affected by salt level; and animal fat content impacted pH values, only at the end of drying. Regarding the biochemical parameters investigated, we statistically found a marked impact of partial substitution of NaCl by KCl on the proteolysis evolution, of fat level and sodium content on the end-product lipolysis, and finally, a significant effect of animal fat level and incorporation of sunflower oil on both protein and lipid oxidations. However, the new product formulations combining salt and fat substitutions lead to globally acceptable water loss and water activity values and similar rates of proteolysis, lipolysis and lipid oxidation, but less protein oxidation. From a practical point of view, the results clearly showed that sodium and animal fat contents in dryfermented sausages can be drastically reduced with no too marked adverse effect on colour, final textural properties or consumer acceptability. On the basis of these laboratory results, new healthier dry-fermented products can be manufactured by an industrial company in the near future.

References

[1]  Zanardi, E., Ghidini, S., Conter, M. and Ianieri, A. (2010) Mineral Composition of Italian Salami and Effect of NaCl Partial Replacement on Compositional, Physico-Chemical and Sensory Parameters. Meat Science, 86, 742-747.
http://dx.doi.org/10.1016/j.meatsci.2010.06.015
[2]  Ansorena, D. and Astiasarán, I. (2004) The Use of Linseed Oil Improves Nutritional Quality of the Lipid Fraction of Dry-Fermented Sausages. Food Chemistry, 87, 69-74.
http://dx.doi.org/10.1016/j.foodchem.2003.10.019
[3]  Muguerza, E., Ansorena, D. and Astiasarán, I. (2003) Improvement of Nutritional Properties of Chorizo de Pamplona by Replacement of Pork Backfat with Soy Oil. Meat Science, 65, 1361-1367.
http://dx.doi.org/10.1016/S0309-1740(03)00058-5
[4]  Severini, C., De Pilli, T. and Baiano, A. (2003) Partial Substitution of Pork Backfat with Extra-Virgin Olive Oil in ‘Salami’ Products: Effects on Chemical, Physical and Sensorial Quality. Meat Science, 64, 323-331.
http://dx.doi.org/10.1016/S0309-1740(02)00204-8
[5]  Ruusunen, M. and Puolanne, E. (2005) Reducing Sodium Intake from Meat Products. Meat Science, 70, 531-541.
http://dx.doi.org/10.1016/j.meatsci.2004.07.016
[6]  Corral, S., Salvador, A. and Flores, M. (2013) Salt Reduction in Slow Fermented Sausages Affects the Generation of Aroma Active Compounds. Meat Science, 93, 776-785.
http://dx.doi.org/10.1016/j.meatsci.2012.11.040
[7]  Muguerza, E., Fista, G., Ansorena, D., Astiasaran, I. and Bloukas, J.G. (2002) Effect of Fat Level and Partial Replacement of Pork Backfat with Olive Oil on Processing and Quality Characteristics of Fermented Sausages. Meat Science, 61, 397-404.
http://dx.doi.org/10.1016/S0309-1740(01)00210-8
[8]  Gimeno, O., Astiasarán, I. and Bello, J. (2001a) Calcium Ascorbate as a Potential Partial Substitute for NaCl in Dry Fermented Sausages: Effect on Colour, Texture and Hygienic Quality at Different Concentrations. Meat Science, 57, 23-29.
http://dx.doi.org/10.1016/S0309-1740(00)00070-X
[9]  Gimeno, O., Astiasarán, I. and Bello, J. (2001b) Influence of Partial Replacement of NaCl with KCl and CaCl2 on Microbiological Evolution of Dry Fermented Sausages. Food Microbiology, 18, 329-334.
http://dx.doi.org/10.1006/fmic.2001.0405
[10]  Guardia, M.D., Guerrero, L., Gelabert, J., Gou, P. and Arnau, J. (2008) Sensory Characterisation and Consumer Acceptability of Small Calibre Fermented Sausages with 50% Substitution of NaCl by Mixtures of KCl and Potassium Lactate. Meat Science, 80, 1225-1230.
http://dx.doi.org/10.1016/j.meatsci.2008.05.031
[11]  Mora-Gallego, H., Serra, X., Guardia, M.D., Miklos, R., Lametsch, R. and Arnau, J. (2013) Effect of the Type of Fat on the Physicochemical, Instrumental and Sensory Characteristics of Reduced Fat Non-Acid Fermented Sausages. Meat Science, 93, 668-674.
http://dx.doi.org/10.1016/j.meatsci.2012.11.042
[12]  Bloukas, J.G., Paneras, E.D. and Fournitzis, G.C. (1997) Effect of Replacing Pork Backfat with Olive Oil on Processing and Quality Characteristics of Fermented Sausages. Meat Science, 45, 133-144.
http://dx.doi.org/10.1016/S0309-1740(96)00113-1
[13]  Valencia, I., Ansorena, D. and Astiasaran, I. (2006) Nutritional and sensory Properties of Dry Fermented Sausages Enriched with n-3 PUFAs. Meat Science, 72, 727-733.
http://dx.doi.org/10.1016/j.meatsci.2005.09.022
[14]  Gelabert, J., Gou, P., Guerrero, L. and Arnau, J. (2003) Effect of Sodium Chloride Replacement on Some Characteristics of Fermented Sausages. Meat Science, 65, 833-839.
http://dx.doi.org/10.1016/S0309-1740(02)00288-7
[15]  Gimeno, O., Ansorena, D., Astiasarán, I. and Bello, J. (2000) Characterization of chorizo de Pamplona: Instrumental Measurements of Colour and Texture. Food Chemistry, 69, 195- 200.
http://dx.doi.org/10.1016/S0308-8146(99)00239-3
[16]  Beriain, M.J., Gomez, I., Petri, E., Insausti, K. and Sarries, M.V. (2011) The Effects of Olive Oil Emulsified Alginate on the Physico-Chemical, Sensory, Microbial, and Fatty Acid Profiles of Low-Salt, Inulin-Enriched Sausages. Meat Science, 88, 189-197.
http://dx.doi.org/10.1016/j.meatsci.2010.12.024
[17]  Mora-Gallego, H., Serra, X., Guàrdia, M.D. and Arnau, J. (2014) Effect of Reducing and Replacing Pork Fat on the Physicochemical, Instrumental and Sensory Characteristics throughout Storage Time of Small Caliber Non-Acid Fermented Sausages with Reduced Sodium Content. Meat Science, 97, 62-68.
http://dx.doi.org/10.1016/j.meatsci.2014.01.003
[18]  Safa, H., Gatellier, P., Lebert, A., Picgirard, L. and Mirade, P.S. (2015) Effect of Combined Salt and Animal Fat Reductions on Physicochemical and Biochemical Changes during the Manufacture of Dry-Fermented Sausages. Food Bioprocess and Technology, 8, 2109-2122.
http://dx.doi.org/10.1007/s11947-015-1563-3
[19]  Harkouss, R., Mirade, P.S. and Gatellier, P. (2012) Development of a Rapid, Specific and Efficient Procedure for the Determination of Proteolytic Activity in Dry-Cured Ham: Definition of a New Proteolysis Index. Meat Science, 92, 84-88.
http://dx.doi.org/10.1016/j.meatsci.2012.04.017
[20]  Liaros, N.G., Katsanidis, E. and Bloukas, J.G. (2009) Effect of the Ripening Time under Vacuum and Packaging Film Permeability on Processing and Quality Characteristics of Low-Fat Fermented Sausages. Meat Science, 83, 589-598.
http://dx.doi.org/10.1016/j.meatsci.2009.07.006
[21]  Muguerza, E., Gimeno, O., Ansorena, D., Bloukas, J.G. and Astiasarán, I. (2001) Effect of Replacing Pork Backfat with Pre-Emulsified Olive Oil on Lipid Fraction and Sensory Quality of Chorizo de Pamplona—A Traditional Spanish Fermented Sausage. Meat Science, 59, 251-258.
http://dx.doi.org/10.1016/S0309-1740(01)00075-4
[22]  Gimeno, O., Astiasarán, I. and Bello, J. (1998) A Mixture of Potassium, Magnesium, and Calcium Chlorides as a Partial Replacement of Sodium Chloride in Dry Fermented Sausages. Journal of Agricultural and Food Chemistry, 46, 4372-4375.
http://dx.doi.org/10.1021/jf980198v
[23]  Ibanez, C., Quintanilla, L., Irigoyen, A., Garcia-Jalón, I., Cid, C., Astiasarán, I. and Bello, J. (1995) Partial Replacement of Sodium Chloride with Potassium Chloride in Dry Fermented Sausages: Influence on Carbohydrate Fermentation and the Nitrosation Process. Meat Science, 40, 45-53.
http://dx.doi.org/10.1016/0309-1740(94)00026-4
[24]  Flores, M., Durá, M.A., Marco, A. and Toldrá, F. (2004) Effect of Debaryomyces spp. on Aroma Formation and Sensory Quality of Dry-Fermented Sausages. Meat Science, 68, 439-446.
http://dx.doi.org/10.1016/j.meatsci.2003.04.001
[25]  Olivares, A., Navarro, J.L., Salvador, A. and Flores, M. (2010) Sensory Acceptability of Slow Fermented Sausages Based on Fat Content and Ripening Time. Meat Science, 86, 251-257.
http://dx.doi.org/10.1016/j.meatsci.2010.04.005
[26]  Garcia, M.L., Dominguez, R., Galvez, M.D., Casas, C. and Selgas, M.D. (2002) Utilization of Cereal and Fruit Fibres in Low Fat Dry Fermented Sausages. Meat Science, 60, 227-236.
http://dx.doi.org/10.1016/S0309-1740(01)00125-5
[27]  Durá, M.A., Flores, M. and Toldrá, F. (2004) Effect of Debaryomyces spp. on the Proteolysis of Dry-Fermented Sausages. Meat Science, 68, 319-328.
http://dx.doi.org/10.1016/j.meatsci.2004.03.015
[28]  Ibanez, C., Quintanilla, L., Cid, C., Astiasarán, I. and Bello, J. (1997) Dry Fermented Sausages Elaborated with Lactobacillus plantarum-Staphylococcus carnosus. Part II: Effect of Partial Replacement of NaCl with KCl on the Proteolytic and Insolubilization Processes. Meat Science, 46, 277-284.
http://dx.doi.org/10.1016/S0309-1740(97)00022-3
[29]  Olivares, A., Navarro, J.L. and Flores, M. (2011) Effect of Fat Content on Aroma Generation during Processing of Dry Fermented Sausages. Meat Science, 87, 264-273.
http://dx.doi.org/10.1016/j.meatsci.2010.10.021
[30]  Fuentes, V., Estévez, M., Ventanas, J. and Ventanas, S. (2014) Impact of Lipid Content and Composition on Lipid Oxidation and Protein Carbonylation in Experimental Fermented Sausages. Food Chemistry, 147, 70-77.
http://dx.doi.org/10.1016/j.foodchem.2013.09.100
[31]  Flores, M., Nieto, P., Ferrer, J.M. and Flores, J. (2005) Effect of Calcium Chloride on the Volatile Pattern and Sensory Acceptance of Dry-Fermented Sausages. European Food Research and Technology, 221, 624-630.
http://dx.doi.org/10.1007/s00217-005-0062-6
[32]  Perez-Cacho, M.P.R., Galan-Soldevilla, H., Leon-Crespo, F. and Molina Recio, G. (2005) Determination of the Sensory Attributes of a Spanish Dry-Cured Sausage. Meat Science, 71, 620-633.
http://dx.doi.org/10.1016/j.meatsci.2005.05.005
[33]  Rhee, K.S., Smith, H.G.C. and Terrell, R.N. (1983) Effect of Reduction and Replacement of Sodium Chloride on Rancidity Development in Raw and Cooked Ground Pork. Journal of Food Protection, 46, 578-581.
[34]  Dos Santos, B.A., Campagnol, P.C.B., Cavalcanti, R.N., Pacheco, M.T.B., Netto, F.M., Motta, E.M.P., Celeguini, R.M.S., Wagner, R. and Pollonio, M.A.R. (2015) Impact of Sodium Chloride Replacement by Salt Sustitutes on the Proteolysis and Rheological Properties of Dry Fermented Sausages. Journal of Food Engineering, 151, 16-24.
http://dx.doi.org/10.1016/j.jfoodeng.2014.11.015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133