We give a neccesary and sufficient condition on a function?such that the composition operator (Nemytskij Operator) H defined by acts in the space and satisfies a local Lipschitz condition. And, we prove that every locally defined operator mapping the space of continuous and bounded Wiener p(·)-variation with variable exponent functions into itself is a Nemytskij com-position operator.
References
[1]
Castillo, R., Merentes, N. and Rafeiro, H. (2014) Bounded Variation Spaces with p-Variable. Mediterranean Journal of Mathematics, 11, 1069-1079. http://dx.doi.org/10.1007/s00009-013-0342-5
[2]
Mejía, O., Merentes, N. and Sánchez, J.L. (2015) The Space of Bounded -Variation in Wiener’s Sense with Variable Exponent. Journal Advances in Pure Mathematics, 5, 703-716. http://dx.doi.org/10.4236/apm.2015.511064
[3]
Orlicz, W. (1931) über konjugierte exponentenfolgen. Studia Mathematica, 3, 200-211.
[4]
Nakano, H. (1950) Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo.
[5]
Kovácik, O. and Rákosník, J. (1991) On Spaces and . Czechoslovak Mathematical Journal, 41, 592-618.
[6]
Fan, X., Zhao, Y. and Zhao, D. (2001) Compact Imbedding Theorems with Symmetry of Strauss-Lions Type for the Space . Journal of Mathematical Analysis and Applications, 255, 333-348. http://dx.doi.org/10.1006/jmaa.2000.7266
[7]
Appell, J. and Zabreiko, P.P. (1990) Nonlinear Superposition Operators. Cambridge University Press, Cambridge.
[8]
Appell, J., Banas, J. and Merentes, N. (2014) Bounded Variation and Around. De Gruyter, Berlin, Boston.
[9]
Sovolevskij, E.P. (1984) The Superposition Operator in Hölder Spaces. (Russian). VINITI No. 3765-84, Voronezh.
[10]
Appell, J., Merentes, N. and Sánchez, J.L. (2011) Locally Lipschitz Composition Operator in Spaces of Functions Of bounded Variation. Annali di Matematica, 190, 33-43. http://dx.doi.org/10.1007/s10231-010-0135-4
[11]
Merentes, N., Rivas, S. and Sánchez, J.L. (2012) Locally Lipschitz Composition Operator in Spaces of . Nonlinear Analysis Series A: Theory, Methods & Applications, 75, 1751-1757.
[12]
Mejía, O., Merentes, N. and Rzepka, B. (2014) Locally Lipschitz Composition Operator in Space of the Functions of Bounded -Variation. Journal of Function Spaces, 2014, 1-8.
[13]
Lichawski, K., Matkowski, J. and Mis, J. (1989) Locally Defined Operators in the Space of Differentiable Functions. Bulletin of the Polish Academy of Sciences—Mathematics, 37, 315-325.
[14]
Matkowski, J. and Wróbel, M. (2008) Locally Defined Operators in the Space of Whitney Differentiable Functions. Nonlinear Analysis: Theory, Methods & Applications, 68, 2933-2942.
[15]
Matkowski, J. and Wróbel, M. (2009) Representation Theorem for Locally Defined Operators in the Space of Whitney Differentiable Functions. Manuscripta Mathematica, 129, 437-448. http://dx.doi.org/10.1007/s00229-009-0283-2
[16]
Wróbel, M. (2010) Locally Defined Operators and a Partial Solution of a Conjecture. Nonlinear Analysis: Theory, Methods & Applications, 72, 495-506.
[17]
Wróbel, M. (2011) Locally Defined Operators in the Hölder’s Spaces. Nonlinear Analysis: Theory, Methods & Applications, 74, 317-323.
[18]
Matkowski, J. and Wróbel, M. (2010) The Bounded Local Operators in the Banach Space of Höolder Functions. Vol. 15 of Scientific Issues, Mathematics, Jan Dlugosz University in Czestochowa.
[19]
Wrobel, M. (2010) Representation Theorem for Local Operators in the Space of Continuous and Monotone Functions. Journal of Mathematical Analysis and Applications, 372, 45-54. http://dx.doi.org/10.1016/j.jmaa.2010.06.013
[20]
Wrobel, M. (2013) Locally Defined Operators in the Space of Functions of Bounded φ-Variation. Real Analysis Exchange, 38, 79-94.
[21]
Aziz, W., Guerrero, J.A., Maldonado, K. and Merentes, N. (2015) Locally Defined Operators in the Space of Functions of Bounded Riesz-Variation. Journal of Mathematics, 2015, 1-4. http://dx.doi.org/10.1155/2015/925091
[22]
Azbelev, N.V. and Simonov, P.M. (2003) Stability of Differential Equation with Aftereffect. Taylor & Francis, New York.
[23]
Matkowski, J. (2010) Local Operators and a Characterization of the Volterra Operator. Annals of Functional Analysis, 1, 36-40. http://dx.doi.org/10.15352/afa/1399900990