全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Locally Defined Operators and Locally Lipschitz Composition Operators in the Space WBVp(·)([a, b])

DOI: 10.4236/apm.2016.610059, PP. 727-744

Keywords: Generalized Variation, p(·)-Variation in Wiener’s Sense, Variable Exponent, Convergence, Helly’s Theorem, Local Operator

Full-Text   Cite this paper   Add to My Lib

Abstract:

We give a neccesary and sufficient condition on a function?\"\"such that the composition operator (Nemytskij Operator) H defined by \"\" acts in the space\"\" and satisfies a local Lipschitz condition. And, we prove that every locally defined operator mapping the space of continuous and bounded Wiener p(·)-variation with variable exponent functions into itself is a Nemytskij com-position operator.

References

[1]  Castillo, R., Merentes, N. and Rafeiro, H. (2014) Bounded Variation Spaces with p-Variable. Mediterranean Journal of Mathematics, 11, 1069-1079.
http://dx.doi.org/10.1007/s00009-013-0342-5
[2]  Mejía, O., Merentes, N. and Sánchez, J.L. (2015) The Space of Bounded -Variation in Wiener’s Sense with Variable Exponent. Journal Advances in Pure Mathematics, 5, 703-716.
http://dx.doi.org/10.4236/apm.2015.511064
[3]  Orlicz, W. (1931) über konjugierte exponentenfolgen. Studia Mathematica, 3, 200-211.
[4]  Nakano, H. (1950) Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd., Tokyo.
[5]  Kovácik, O. and Rákosník, J. (1991) On Spaces and . Czechoslovak Mathematical Journal, 41, 592-618.
[6]  Fan, X., Zhao, Y. and Zhao, D. (2001) Compact Imbedding Theorems with Symmetry of Strauss-Lions Type for the Space . Journal of Mathematical Analysis and Applications, 255, 333-348.
http://dx.doi.org/10.1006/jmaa.2000.7266
[7]  Appell, J. and Zabreiko, P.P. (1990) Nonlinear Superposition Operators. Cambridge University Press, Cambridge.
[8]  Appell, J., Banas, J. and Merentes, N. (2014) Bounded Variation and Around. De Gruyter, Berlin, Boston.
[9]  Sovolevskij, E.P. (1984) The Superposition Operator in Hölder Spaces. (Russian). VINITI No. 3765-84, Voronezh.
[10]  Appell, J., Merentes, N. and Sánchez, J.L. (2011) Locally Lipschitz Composition Operator in Spaces of Functions Of bounded Variation. Annali di Matematica, 190, 33-43.
http://dx.doi.org/10.1007/s10231-010-0135-4
[11]  Merentes, N., Rivas, S. and Sánchez, J.L. (2012) Locally Lipschitz Composition Operator in Spaces of . Nonlinear Analysis Series A: Theory, Methods & Applications, 75, 1751-1757.
[12]  Mejía, O., Merentes, N. and Rzepka, B. (2014) Locally Lipschitz Composition Operator in Space of the Functions of Bounded -Variation. Journal of Function Spaces, 2014, 1-8.
[13]  Lichawski, K., Matkowski, J. and Mis, J. (1989) Locally Defined Operators in the Space of Differentiable Functions. Bulletin of the Polish Academy of Sciences—Mathematics, 37, 315-325.
[14]  Matkowski, J. and Wróbel, M. (2008) Locally Defined Operators in the Space of Whitney Differentiable Functions. Nonlinear Analysis: Theory, Methods & Applications, 68, 2933-2942.
[15]  Matkowski, J. and Wróbel, M. (2009) Representation Theorem for Locally Defined Operators in the Space of Whitney Differentiable Functions. Manuscripta Mathematica, 129, 437-448.
http://dx.doi.org/10.1007/s00229-009-0283-2
[16]  Wróbel, M. (2010) Locally Defined Operators and a Partial Solution of a Conjecture. Nonlinear Analysis: Theory, Methods & Applications, 72, 495-506.
[17]  Wróbel, M. (2011) Locally Defined Operators in the Hölder’s Spaces. Nonlinear Analysis: Theory, Methods & Applications, 74, 317-323.
[18]  Matkowski, J. and Wróbel, M. (2010) The Bounded Local Operators in the Banach Space of Höolder Functions. Vol. 15 of Scientific Issues, Mathematics, Jan Dlugosz University in Czestochowa.
[19]  Wrobel, M. (2010) Representation Theorem for Local Operators in the Space of Continuous and Monotone Functions. Journal of Mathematical Analysis and Applications, 372, 45-54.
http://dx.doi.org/10.1016/j.jmaa.2010.06.013
[20]  Wrobel, M. (2013) Locally Defined Operators in the Space of Functions of Bounded φ-Variation. Real Analysis Exchange, 38, 79-94.
[21]  Aziz, W., Guerrero, J.A., Maldonado, K. and Merentes, N. (2015) Locally Defined Operators in the Space of Functions of Bounded Riesz-Variation. Journal of Mathematics, 2015, 1-4.
http://dx.doi.org/10.1155/2015/925091
[22]  Azbelev, N.V. and Simonov, P.M. (2003) Stability of Differential Equation with Aftereffect. Taylor & Francis, New York.
[23]  Matkowski, J. (2010) Local Operators and a Characterization of the Volterra Operator. Annals of Functional Analysis, 1, 36-40.
http://dx.doi.org/10.15352/afa/1399900990

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133