%0 Journal Article
%T Locally Defined Operators and Locally Lipschitz Composition Operators in the Space <i>WBV</i><i>p</i>(·)([a, b])
%A Jos¨¦ Atilio Guerrero
%A Odalis Mej¨ªa
%A Nelson Merentes
%J Advances in Pure Mathematics
%P 727-744
%@ 2160-0384
%D 2016
%I Scientific Research Publishing
%R 10.4236/apm.2016.610059
%X We give a neccesary and sufficient condition on a function
such that the composition operator (Nemytskij Operator) H defined by
acts in the space
and satisfies a local Lipschitz condition. And, we prove that every locally defined operator mapping the space of continuous and bounded Wiener p(·)-variation with variable exponent functions into itself is a Nemytskij com-position operator.
%K Generalized Variation
%K <
%K i>
%K p<
%K /i>
%K (·
%K )-Variation in Wiener¡¯s Sense
%K Variable Exponent
%K Convergence
%K Helly¡¯s Theorem
%K Local Operator
%U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=70894