%0 Journal Article %T Locally Defined Operators and Locally Lipschitz Composition Operators in the Space <i>WBV</i><i>p</i>(·)([a, b]) %A Jos¨¦ Atilio Guerrero %A Odalis Mej¨ªa %A Nelson Merentes %J Advances in Pure Mathematics %P 727-744 %@ 2160-0384 %D 2016 %I Scientific Research Publishing %R 10.4236/apm.2016.610059 %X We give a neccesary and sufficient condition on a function \"\"such that the composition operator (Nemytskij Operator) H defined by \"\" acts in the space\"\" and satisfies a local Lipschitz condition. And, we prove that every locally defined operator mapping the space of continuous and bounded Wiener p(&#183;)-variation with variable exponent functions into itself is a Nemytskij com-position operator. %K Generalized Variation %K < %K i> %K p< %K /i> %K (· %K )-Variation in Wiener¡¯s Sense %K Variable Exponent %K Convergence %K Helly¡¯s Theorem %K Local Operator %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=70894