37 μm × 37 μm array of metamaterial-based microbolometers was designed and successfully fa-bricated by conventional MEMS technology. FTIR measurements reveal that the as-designed mi-crobolometers exhibit a high absorption of ~31.5% at 3.93 THz. In contrast, no response can be detected from those microbolometers without metamaterials. The experimental results have been confirmed by simulations.
Liu, N., Guo, H.C., Fu, L.W., Kaiser, S., Schweizer, H. and Giessen, H. (2008) Three-Dimensional Photonic Metamaterials at Optical Frequencies. Nat. Mater., 7, 31-37. http://dx.doi.org/10.1038/nmat2072
[3]
Luo, L., Chatzakis, I., Wang, J.G., Niesler, F.B.P., Wegener, M., Koschny, T. and Sou-koulis, C.M. (2014) Broadband Terahertz Generation from Metamaterials. Nat. Commun., 5, 1-6. http://dx.doi.org/10.1038/ncomms4055
[4]
Chen, H.T., Padilla, W.J., Zide, J.M.O., Bank, S.R., Gossard, A.C., Taylor, A.J. and Averitt, R.D. (2007) Ultrafast Optical Switching of Terahertz Metamaterials Fabricated on ErAs?GaAs Nanoisland Superlattices. Opt. Lett., 32, 1620-1622. http://dx.doi.org/10.1364/OL.32.001620
[5]
Park, S.J., Hong, J.T., Choi, S.J., Kim, H.S., Park, W.K., Han, S.T., Park, J.Y., Lee, S., Kim, D.S. and Ahn, Y.H. (2014) Detection of Microorganisms Using Terahertz Metamaterials. Sci. Rep., 4, 1-7. http://dx.doi.org/10.1038/srep04988
Hu, T., Landy, N.I., Bingham, C.M., Zhang, X., Averitt, R.D. and Padilla, W.J. (2008) A Metamaterial Absorber for the Terahertz Regime: Design, Fa-brication and Characterization. Opt. Express, 16, 7181-7188.
http://dx.doi.org/10.1364/OE.16.007181
[8]
Lee, A.W. and Hu, Q. (2005) Real-Time, Continuous-Wave Terahertz Imaging by Use of a Microbolometer Focal- Plane Array. Opt. Lett., 30, 2563-2565. http://dx.doi.org/10.1364/OL.30.002563