全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Sputtering Deposition of Al Enhances the Output Reproducibility in a Conducting Rubber Force Sensor

DOI: 10.4236/jst.2016.63004, PP. 46-55

Keywords: Conducting Rubber, Force Sensor, Electrode, Magnetron Sputtering, Reproducibility

Full-Text   Cite this paper   Add to My Lib

Abstract:

Compressive force sensors or pressure sensors are indispensable to tactile sensors in humanoid robots. It is investigated that low-cost electro-conducting rubber sheets are applied to the force sensor, of which the biggest problem is its poor reproducibility. It was found that the aluminum deposition by a vacuum evaporation method shows excellent characteristics but suffers deterioration by a radiation heating effect. The aluminum electrode was deposited by a sputtering method, known to have an advantage of a low-temperature method, and the reproducibility of the output was improved.

References

[1]  Lee, M.H. and Nicholls, H.R. (1999) Review Article Tactile Sensing for Mechatronics—A State of the Art Survey. Mechatronics, 9, 1-31.
http://dx.doi.org/10.1016/S0957-4158(98)00045-2
[2]  Li, Z., Hsu, P. and Sastry, S. (1989) Grasping and Coordinated Manipulation by a Multifingered Robot Hand. International Journal of Robotics Research, 8, 33-50.
http://dx.doi.org/10.1177/027836498900800402
[3]  Berger, A.D. and Khosla, P.K. (1991) Using Tactile Data for Real-Time Feedback. International Journal of Robotics Research, 10, 88-102.
http://dx.doi.org/10.1177/027836499101000202
[4]  Schmidt, P.A., Mael, E. and Wurtz, R.P. (2006) A Sensor for Dynamic Tactile Information with Applications in Human-Robot Interaction & Object Exploration. Robotics and Autonomous Systems, 54, 1005-1014.
http://dx.doi.org/10.1016/j.robot.2006.05.013
[5]  Kim, K., Lee, K.R., Kim, W.H., Park, K., Kim, T., Kim, J. and Pak, J.J. (2009) Polymer-Based Flexible Tactile Sensor up to 32 × 32 Arrays Integrated with Interconnection Teminals. Sensors and Actuators A: Physical, 156, 284-291.
http://dx.doi.org/10.1016/j.sna.2009.08.015
[6]  Engel, J., Chen, J. and Liu, C. (2003) Development of Polyimide Flexible Tactile Sensor Skin. Journal of Micromechanics and Microengineering, 13, 359-366.
http://dx.doi.org/10.1088/0960-1317/13/3/302
[7]  Zhang, Y. (2010) Sensitivity Enhancement of a Micro-Scale Biomimetic Tactile Sensor with Epidermal Ridges. Journal of Micromechanics and Microengineering, 20, 085012.
http://dx.doi.org/10.1088/0960-1317/20/8/085012
[8]  Choi, W.-C. (2010) Polymer Micromachined Flexible Tactile Sensor for Three-Axial Toads Detection. Transactions on Electrical and Electronic Materials, 11, 130-133.
http://dx.doi.org/10.4313/TEEM.2010.11.3.130
[9]  Noda, K., Hoshino, K., Matsumoto, K. and Shimoyama, I. (2006) A Shear Stress Sensor for Tactile Sensing with the Piezoresistive Cantilever Standing in Elastic Material. Sensors and Actuators A: Physical, 127, 295-301.
http://dx.doi.org/10.1016/j.sna.2005.09.023
[10]  Beccai, L., Rocdella, S., Ascari, L., Valdastri, P., Sieber, A., Carrozza, M. and Dario, P. (2008) Development and Experimental Analysis of a Soft Compliant Tactile Microsensor for Anthropomorphic Artificial Hand. IEEE/ASME Transactions on Mechatronics, 13, 158-168.
http://dx.doi.org/10.1109/TMECH.2008.918483
[11]  Lee, H., Chung, J., Chang, S. and Yoon, E. (2008) Normal and Shear Force Measurement Using a Flexible Polymer Tactile Sensor with Embedded Multiple Capacitors. Journal of Microelectromechanical Systems, 17, 934-942.
http://dx.doi.org/10.1109/JMEMS.2008.921727
[12]  Miyazaki, S. and Ishida, A. (1984) Capacitive Transducer for Continuous Measurement of Vertical Foot Force. Medical & Biological Engineering & Computing, 22, 309-316.
http://dx.doi.org/10.1007/BF02442098
[13]  Hasegawa, Y., Shikida, M., Ogura, D., Suzuki, Y. and Sato, K. (2008) Fabrication of a Wearable Fabric Tactile Sensor Produced by Artificial Hollow Fiber. Journal of Micromechanics and Microengineering, 18, 085014.
http://dx.doi.org/10.1088/0960-1317/18/8/085014
[14]  Heo, J.-S., Chung, J.-H. and Lee, J.-J. (2006) Tactile Sensor Arrays Using Fiber Bragg Grating. Sensors and Actuators A, 126, 312-327.
http://dx.doi.org/10.1016/j.sna.2005.10.048
[15]  Cheung, E. and Lumelsky, V.L. (1992) A Sensitive Skin System for Motion Control of Robot Arm Manipulators. Robotics and Autonomous Systems, 10, 9-32.
http://dx.doi.org/10.1016/0921-8890(92)90012-N
[16]  Kolesar, E.S., Reston, R.R., Ford, D.G. and Fitch, R.C. (1992) Multiplexed Piezoelectric Polymer Tactile Sensor. Journal of Field Robotics, 9, 37-63.
http://dx.doi.org/10.1002/rob.4620090104
[17]  Dargahi, J., Parameswaran, M. and Payandeh, S. (2000) A Micromachined Piezoelectric Tactile Sensor for an Endoscopic Grasper—Theory, Fabrication and Experiments. Journal of Microelectromechanical Systems, 9, 329-335.
http://dx.doi.org/10.1109/84.870059
[18]  Flanagan, J.R. and Wing, A.M. (1993) Modulation of Grip Force with Load Force during Point-to-Point Arm Movements. Experimental Brain Research, 95, 131-143.
http://dx.doi.org/10.1007/BF00229662
[19]  Dario, P. and de Rossi, D. (1985) Tactile Sensors and Gripping Challenge. IEEE Spectrum, 22, 46-52.
http://dx.doi.org/10.1109/MSPEC.1985.6370785
[20]  Wettels, N., Santos, V., Johansson, R. and Loeb, G. (2008) Biomimetric Tactile Sensor Array. Advanced Robotics, 22, 829-849.
http://dx.doi.org/10.1163/156855308X314533
[21]  Manunza, I. and Bonfiglio, A. (2007) Pressure Sensing Using a Completely Flexible Organic Transistor. Biosensors and Bioelectronics, 22, 2775-2779.
http://dx.doi.org/10.1016/j.bios.2007.01.021
[22]  Sekitani, T. and Someya, T. (2010) Stretchable, Large-Area Organic Electronics. Advanced Materials, 22, 2228-2246.
http://dx.doi.org/10.1002/adma.200904054
[23]  Bloor, D., Donnelly, K., Hands, P.J., Laughlin, P. and Lussey, D. (2005) A Metal-Polymer Composite with Unusal Properties. Journal of Physics D: Applied Physics, 38, 2851-2860.
http://dx.doi.org/10.1088/0022-3727/38/16/018
[24]  Maheshwari, V. and Saraf, R.F. (2006) High-Resolution Thin-Film Device to Sense Texture by Touch. Science, 312, 1501-1504.
http://dx.doi.org/10.1126/science.1126216
[25]  Ando, S. and Shinoda, H. (1995) Ultrasonic Emission Tactile Sensing. IEEE Control Systems Magazine, 15, 61-69.
http://dx.doi.org/10.1109/37.341866
[26]  Dahiya, R.S., Valle, M. and Lorenzelli, L. (2009) Spice Modelof Lossy Piezoelectric Polymers. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 56, 387-396.
http://dx.doi.org/10.1109/TUFFC.2009.1048
[27]  Krishna, G.M. and Rajanna, K. (2004) Tactile Sensor Based on Piezoelectric Resonance. IEEE Sensors Journal, 4, 691-697.
http://dx.doi.org/10.1109/JSEN.2004.833505
[28]  Nelson, T.J., Dover, R.B.V., Jin, S., Hackwood, S. and Beni, G. (1986) Shear-Sensitive Magnetroresistive Robotic Tactile Sensor. IEEE Transactions, 22, 394-396.
http://dx.doi.org/10.1109/TMAG.1986.1064386
[29]  Wen, Z., Wu, Y., Zhang, Z., Xu, S., Huang, S. and Li, Y. (2003) Development of an Integrated Vacuum Microelectronic Tactile Sensor Array. Sensors and Actuators A, 103, 301-306.
http://dx.doi.org/10.1016/S0924-4247(02)00392-8
[30]  Beebe, D.J., Hsieh, A.S., Denton, D.D. and Radwin, R.G. (1995) A Silicon Force Sensor for Robotics and Medicine. Sensors and Actuators A, 50, 55-65.
http://dx.doi.org/10.1016/0924-4247(96)80085-9
[31]  Wolffenbuttel, M.R. and Regtien, P.P.L. (1991) Polysilicon Bridges for the Realization of Tactile Sensors. Sensors and Actuators A, 26, 257-264.
http://dx.doi.org/10.1016/0924-4247(91)87002-K
[32]  Sugiyama, S., Kawahata, K., Yoneda, M. and Igarashi, I. (1990) Tactile Image Detection Using a 1K-Element Silicon Pressure Sensor Array. Sensors and Actuators A, 22, 397-400.
http://dx.doi.org/10.1016/0924-4247(89)80001-9
[33]  Liu, L., Zheng, X. and Li, Z. (1993) An Array Tactile Sensor with Piezoresistive Single-Crystal Silicon Diaphragm. Sensors and Actuators A, 35, 193-196.
http://dx.doi.org/10.1016/0924-4247(93)80151-6
[34]  Kane, B.J., Cutkosky, M.R. and Kovacs, G.T.A. (2000) A Traction Stress Sensor Array for Use in High-Resolution Robotic Tactile Imaging. Journal of Microelectromechanical Systems, 9, 425-434.
http://dx.doi.org/10.1109/84.896763
[35]  Takao, H., Sawada, K. and Ishida, M. (2006) Monolithic Silicon Smart Tactile Image Sensor with Integrated Strain Sensor Array on Pneumatically Swollen Single-Diaphragm Structure. IEEE Transactions on Electron Devices, 53, 1250-1259.
http://dx.doi.org/10.1109/TED.2006.872698
[36]  Chu, Z., Saoor, P.M. and Middelhoek, S. (1996) Silicon Three-Axial Tactile Sensor. Sensors and Actuators A, 54, 505-510.
http://dx.doi.org/10.1016/S0924-4247(95)01190-0
[37]  Leineweber, M., Pelz, G., Schmidt, M., Kappert, H. and Zimmer, G. (2000) New Tactile Sensor Chip with Silicone Rubber Cover. Sensors and Actuators A, 84, 236-245.
http://dx.doi.org/10.1016/S0924-4247(00)00310-1
[38]  Ohmukai, M., Kami, Y. and Matsuura, R. (2012) Electrode for Force Sensor of Conductive Rubber. Journal of Sensor Technology, 2, 127-131.
http://dx.doi.org/10.4236/jst.2012.23018
[39]  Ohmukai, M., Kami, Y. and Ahida, K. (2013) Conducting Rubber Force Sensor: Transient Characteristics and Radiation Heating Effect. Journal of Sensor Technology, 3, 36-41.
http://dx.doi.org/10.4236/jst.2013.33007
[40]  LaMotte, R.H. and Srinivasan, M.A. (1987) Tactile Discriminationof Shape: Responses of Slowly Adapting Mechanoreceptive Afferents to a Step Stroked across the Monkey Fingerpad. Journal of Neuroscience, 7, 1655-1671.
[41]  LaMotte, R.H. and Srinivasan, M.A. (1987) Tactile Discriminationof Shape: Responses of Rapidly Adapting Mechanoreceptive Afferents to a Step Stroked across the Monkey Fingerpad. Journal of Neuroscience, 7, 1672-1681.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133