全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

New Sulfonamides Derived from Carvacrol: Compounds with High Antibacterial Activity against Resistant Staphylococcus aureus Strains

DOI: 10.4236/jbm.2016.47011, PP. 105-114

Keywords: Sulfonamides, Carvacrol, Antibacterial, Staphylococcus aureus, Synergism

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nine new sulfonamides derived from carvacrol were prepared through a reaction between 4-hydroxy-2-isopropyl-5-methyl benzene sulfonyl chloride with various amines in excellent yields (76% - 92%). The sulfonamides were characterized using spectrometric and spectroscopic methods. Among these compounds, three derivatives showed excellent results in antibacterial activity against resistant S. aureus strains, with MIC values ranging from 3.9 to 62.50 ppm. The sulfonamide derivative of 4-methylaniline (SULF-1) had the best performance for all tested strains of bacteria (MIC = 3.9 to 15.62 ppm). Furthermore, the sulfonamide derivative of 4-fluoro aniline (SULF-3), which also presented promising results, was found to have a synergistic effect when combined with tetracycline and partial synergistic effect when combined with ampicillin, exhibiting an FIC index between 0.50 and 0.75. The sulfonamide derivative of 4-methylaniline had a synergistic effect in combination with erythromycin exhibiting an FIC index of 0.37. Carvacrol in association with the antibiotics tested did not have a synergistic effect.

References

[1]  National Research Council (2014) Technological Challenges in Antibiotic Discovery and Development: A Workshop Summary. The National Academies Press, Washington DC.
[2]  Spellberg, B., Bartlett, J.G. and Gilbert, D.N. (2013) The Future of Antibiotics and Resistance. The New England Journal of Medicine, 368, 299-302.
http://dx.doi.org/10.1056/NEJMp1215093
[3]  Khameneh, B., Diab, R., Ghazvini, K. and Bazzaz, B.S.F. (2016) Breakthroughs in Bacterial Resistance Mechanisms and the Potential Ways to Combat Them. Microbial Pathogenesis, 95, 32-42.
http://dx.doi.org/10.1016/j.micpath.2016.02.009
[4]  Hughes, D. and Kárlen, A. (2014) Discovery and Preclinical Development of New Antibiotics. Upsala Journal of Medical Sciences, 119, 162-169.
http://dx.doi.org/10.3109/03009734.2014.896437
[5]  Nascimento, G.G.F., Locatelli, J., Freitas, P.C. and Silva, G.L. (2000) Antibacterial Activity of Plant Extracts and Phytochemicals on Antibiotics-Resistant Bacteria. Brazilian Journal of Microbiology, 31, 247-256.
http://dx.doi.org/10.1590/S1517-83822000000400003
[6]  WHO (2014) Antimicrobial Resistance: Global Report on Surveillance 2014.
http://www.who.int/drugresistance/documents/surveillancereport/en/
[7]  Appelbaum, P.C. (2007) Microbiology of Antibiotic Resistance in Staphylococcus aureus. Clinical Infectious Diseases, 45, S165-S170.
http://dx.doi.org/10.1086/519474
[8]  Bartolomeu, M., Rocha, S., Cunha, A., Neves, M.G.P.M.S., Faustino, M.A.F. and Almeida, A. (2016) Effect of Photodynamic Therapy on the Virulence Factors of Staphylococcus aureus. Frontiers in Microbiology, 7, 1-11.
http://doi.org/10.3389/fmicb.2016.00267
[9]  Bien, J., Sokolova, O. and Bozko, P. (2011) Characterization of Virulence Factors of Staphylococcus aureus: Novel Function of Known Virulence Factors That Are Implicated in Activation of Airway Epithelial Proinflammatory Response. Journal of Pathogens, 2011, 1-13.
http://dx.doi.org/10.4061/2011/601905
[10]  Chambers, H.F. and DeLeo F.R. (2009) Waves of Resistance: Staphylococcus aureus in the Antibiotic Era. Nature Reviews Microbiology, 7, 629-641.
http://doi.org/10.1038/nrmicro2200
[11]  Pantosti, A., Sanchini, A. and Monaco, M. (2007) Mechanisms of Antibiotic Resistance in Staphylococcus aureus. Future Microbiology, 2, 323-334.
http://doi.org/10.2217/17460913.2.3.323
[12]  Alsughayer, A., Elassar, A.A., Mustafa, S. and Al Sagheer, F. (2011) Synthesis, Structure Analysis and Antibacterial Activity of New Potent Sulfonamide Derivatives. Journal of Biomaterials and Nanobiotechnology, 2, 144-149.
http://dx.doi.org/10.4236/jbnb.2011.22018
[13]  Genc, Y., Ozkanca, R. and Bekdemir, Y. (2008) Antimicrobial Activity of Some Sulfonamide Derivatives on Clinical Isolates of Staphylococus aureus. Annals of Clinical Microbiology and Antimicrobials, 7, 1-6.
http://dx.doi.org/10.1186/1476-0711-7-17
[14]  Al-Mohammed, N.N., Abdullah, Y.A.Z., Shakir, R.M., Taha, E.M. and Hamid, A.A. (2013) Synthesis and Anti-bacterial Evaluation of Some Novel Imidazole and Benzimidazole Sulfonamides. Molecules, 18, 11978-11995.
http://dx.doi.org/10.3390/molecules181011978
[15]  Casini, A., Scozzafava, A., Mastrolorenzo, A. and Supuran, C.T. (2002) Sulfonamides and Sulfonylated Derivatives as Anticancer Agents. Current Cancer Drug Targets, 2, 55-75.
http://dx.doi.org/10.2174/1568009023334060
[16]  Supuran, C.T., Scozzafava, A. and Casini, A. (2003) Carbonic Anhydrase Inhibitors. Medicinal Research Reviews, 23, 146-189.
http://dx.doi.org/10.1002/med.10025
[17]  Hosseinzadeh, N., et al. (2013) Synthesis and Antidiabetic Evaluation of Benzenesulfonamide Derivatives. Iranian Journal of Pharmaceutical Research, 12, 325-330.
[18]  Bhat, M.A., Imran, M., Khan, S.A. and Siddiqui, N. (2005) Biological Activities of Sulfonamides. Indian Journal of Pharmaceutical Sciences, 67, 151-159.
[19]  Boyd III, A.E. (1988) Sulfonylurea Receptors, Ion Channels and Fruit Flies. Diabetes, 37, 847-850.
http://dx.doi.org/10.2337/diab.37.7.847
[20]  Santos, M.A., Marques, S.M., Tuccinardi, T., Carelli, P., Panelli, L. and Rossello, A. (2006) Design, Synthesis and Molecular Modeling Study of Iminodiacetyl Monohydroxamic Acid Derivatives as MMP Inhibitors. Bioorganic & Medicinal Chemistry, 14, 7539-7550.
http://dx.doi.org/10.1016/j.bmc.2006.07.011
[21]  Supuran, C.T., Casini, A. and Scozzafava, A. (2003) Protease Inhibitors of the Sulfonamide Type: Anticancer, Antiinflammatory, and Antiviral Agents. Medicinal Research Reviews, 23, 535-558.
http://dx.doi.org/10.1002/med.10047
[22]  Supuran, C.T., Scozzafava, A. and Clare, B.W. (2002) Bacterial Protease Inhibitors. Medicinal Research Reviews, 22, 329-372.
http://dx.doi.org/10.1002/med.10007
[23]  Alam, J., Alam, O., Ali, R., Naim, M.J. and Khan, S.A. (2015) Synthesis and Anti-Inflammatory Activity of Some New Thiadiazole Linked Pyrazole Benzene Sulphonamides as Cyclooxygenase Inhibitors. Oriental Journal of Chemistry, 31, 1873-1885.
http://dx.doi.org/10.13005/ojc/310404
[24]  Fusiarz, I., Lawecka, J. and Branowska, D. (2014) Biological Activity and Synthesis of Sulfonamide Derivatives: A Brief Review. CHEMIK, 68, 620-628.
[25]  Becheker, I., Berredjem, H., Boutefnouchet, N., Berredjem, M. and Ladjama, A. (2014) Antibacterial Activity of Four Sulfonamide Derivatives against Multidrug-Resistant Staphylococcus aureus. Journal of Chemical and Pharmaceutical Research, 6, 893-899.
[26]  Baser, K.H.C. (2008) Biological and Pharmacological Activities of Carvacrol and Carvacrol Bearing Essential Oils. Current Pharmaceutical Design, 14, 3106-3120.
http://dx.doi.org/10.2174/138161208786404227
[27]  Arfa, A.B., Combes, S., Preziosi-Belloy, L., Gontard, N. and Chalier, P. (2006) Antimicrobial Activity of Carvacrol Related to Its Chemical Structure. Letters in Applied Microbiology, 43, 149-154.
http://dx.doi.org/10.1111/j.1472-765X.2006.01938.x
[28]  Bnyan, I.A., Abid, A.T. and Obied, H.N. (2014) Antibacterial Activity of Carvacrol against Different Types of Bacteria. Journal of Natural Sciences Research, 4, 13-16.
[29]  Abbaszadeh, S., Sharifzadeh, A., Shokri, H., Khosravi, A.R. and Abbaszadeh, A. (2014) Antifungal Efficacy of Thymol, Carvacrol, Eugenol and Menthol as Alternative Agents to Control the Growth of Food-Relevant Fungi. Journal de Mycologie Médicale, 24, 51-56.
http://dx.doi.org/10.1016/j.mycmed.2014.01.063
[30]  Kordali, S., Cakir, A., Ozer, H., Cakmakci, R., Kesdek, M. and Mete, E. (2008) Antifungal, Phytotoxic and Insecticidal Properties of Essential Oil Isolated from Turkish Origanum acutidens and Its Three Components, Carvacrol, Thymol and p-Cymene. Bioresource Technology, 99, 8788-8795.
http://dx.doi.org/10.1016/j.biortech.2008.04.048
[31]  Landa, P., Kokoska, L., Pribylova, M., Vanek, T. and Marsik, P. (2009) In Vitro Anti-Inflammatory Activity of Carvacrol: Inhibitory Effect on COX-2 Catalyzed Prostaglandin E2 Biosynthesis. Archives of Pharmacal Research, 32, 75-78.
http://dx.doi.org/10.1007/s12272-009-1120-6
[32]  Arigesavan, K. and Sudhandiran, G. (2015) Carvacrol Exhibits Anti-Oxidant and Anti-Inflammatory Effects against 1, 2-Dimethyl Hydrazine plus Dextran Sodium Sulfate Induced Inflammation Associated Carcinogenicity in the Colon of Fischer 344 Rats. Biochemical and Biophysical Research Communications, 461, 314-320.
http://dx.doi.org/10.1016/j.bbrc.2015.04.030
[33]  Guimaraes, A.G., et al. (2010) Bioassay-Guided Evaluation of Antioxidant and Antinociceptive Activities of Carvacrol. Basic & Clinical Pharmacology & Toxicology, 107, 949-957. http://dx.doi.org/10.1111/j.1742-7843.2010.00609.x
[34]  Aydin, S., Basaran, A.A. and Basaran, N. (2005) The Effects of Thyme Volatiles on the Induction of DNA Damage by the Heterocyclic Amine IQ and Mitomycin C. Mutation Research, 581, 43-53.
http://dx.doi.org/10.1016/j.mrgentox.2004.10.017
[35]  Maksimovic, M., Milos, M. and Milos, M. (2007) In Vitro Acetylcholinesterase Inhibitory Properties of Thymol, Carvacrol and Their Derivatives Thymoquinone and Thymohydroquinone. Phytotherapy Research, 21, 259-261.
http://dx.doi.org/10.1002/ptr.2063
[36]  Guimaraes, A.G., et al. (2014) Orofacial Analgesic-Like Activity of Carvacrol in Rodents. Zeitschrift für Naturforschung C, 67, 481-485.
[37]  Sobral-Souza, C.E., et al. (2014) Cytotoxic and Antiparasitic in Vitro Activities of α-Pinene and Carvacrol. Acta Toxicológica Argentina, 22, 76-80.
[38]  Lindberg, C.M., Melathopoulos, A.P. and Winston, M.L. (2000) Laboratory Evaluation of Miticides to Control Varroa jacobsoni (Acari: Varroidae), a Honey Bee (Hymenoptera: Apidae) Parasite. Journal of Economic Entomology, 93, 189-198.
http://dx.doi.org/10.1603/0022-0493-93.2.189
[39]  Jesus, F.P.K., et al. (2015) In Vitro Activity of Carvacrol and Thymol Combined with Antifungals or Antibacterials against Pythium insidiosum. Journal de Mycologie Médicale, 25, 89-93.
http://dx.doi.org/10.1016/j.mycmed.2014.10.023
[40]  Nostro, A. and Papalia, T. (2012) Antimicrobial Activity of Carvacrol: Current Progress and Future Prospectives. Recent Patents on Anti-Infective Drug Discovery, 7, 28-35.
http://dx.doi.org/10.2174/157489112799829684
[41]  De Oliveira, A.S. (2014) Synthesis of Derivatives from Lawsone, Carvacrol, 1-Hydroxy Pyrazole and Their Biological Activities. Ph.D. Thesis, Federal University of Santa Catarina, Florianópolis.
[42]  Honório, V.G., et al. (2015) Inhibition of Staphylococcus aureus Cocktail Using the Synergies of Oregano and Rosemary Essential Oils or Carvacrol and 1,8-Cineole. Frontiers in Microbiology, 6, Article 1223.
http://dx.doi.org/10.3389/fmicb.2015.01223
[43]  Kalemba, D. and Kunicka, A. (2003) Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10, 813-829.
http://dx.doi.org/10.2174/0929867033457719
[44]  Salgueiro, L.R., Cavaleiro, C., Pinto, E., Pina-Vaz, C., Rodrigues, A.G., Palmeira, A., Tavares, C., Costa-de-Oliveira, S., Goncalves, M.J. and Martinez-de-Oliveira, J. (2003) Chemical Composition and Antifungal Activity of the Essential Oil of Origanum virens on Candida Species. Planta Medica, 69, 871-874.
http://dx.doi.org/10.1055/s-2003-43203
[45]  Ferhout, H., Bohatier, J., Guillot, J. and Chalchat, J.C. (1999) Antifungal Activity of Selected Essential Oils, Cinnamaldehyde and Carvacrol against Malassezia furfur and Candida albicans. Journal of Essential Oil Research, 11, 119-129.
http://dx.doi.org/10.1080/10412905.1999.9701086
[46]  Kim, J.M., Marshall, M.R., Cornell, J.A., Preston III, J.F. and Wei, C.I. (1995) Antibacterial Activity of Carvacrol, Citral, and Geraniol against Salmonella typhimurium in Culture Medium and on Fish Cubes. Journal of Food Science, 60, 1364-1368.
http://dx.doi.org/10.1111/j.1365-2621.1995.tb04592.x
[47]  Eliopoulos, G. and Moellering Jr., R.C. (1996) Antimicrobial Combinations. In: Lorian, V., Ed., Antibiotics in Laboratory Medicine, the Williams & Wilkins Co., Baltimore, 330-396.
[48]  Pillai, S.K., Moellering, R.C. and Eliopoulos, G.M. (2005) Antimicrobial Combinations. In: Lorian, V., Ed., Antibiotics in Laboratory Medicine, 5th Edition, the Lippincott Williams & Wilkins Co., Philadelphia, 365-440.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133