全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Role of α-Tubulin Acetylation and Protein Kinase D2 Ser/Tyr Phosphorylation in Modulation by Ghrelin of Porphyromonas gingivalis-Induced Enhancement in Matrix Metalloproteinase-9 (MMP-9) Secretion by Salivary Gland Cells

DOI: 10.4236/jbm.2016.47009, PP. 82-94

Keywords: Porphyromonas gingivalis, Oral Mucosa, Ghrelin, MMP-9, α-Tubulin Acetylation, Arf1, PKD2 Ser/Tyr Phosphorylation

Full-Text   Cite this paper   Add to My Lib

Abstract:

Matrix metalloproteinas-9 (MMP-9) is a glycosylated endopeptidase, and hence its processing between the endoplasmic reticulum (ER), Golgi and trans-Golgi (TGN) network remains under a strict control of factors that affect the microtubule (MT) stabilization, and the recruitment and activation of coat and cargo proteins, including ADP-ribosylation factors (Arfs) and protein kinase D (PKD). Here, we report on the factors implicated in the regulation of MMP-9 secretion by salivary gland acinar cells in response to P. gingivalis LPS, and the effect of hormone, ghrelin. We show that the LPS-elicited induction in MMP-9 secretion is associated with the increase in α-tubulin acetylation and the enhancement in MT stabilization, while the modulatory effect of ghrelin is reflected in a decrease in α-tubulin acetylation. Further, the effect of the LPS occurs in concert with up-regulation in Arf-guanine nucleotide exchange factor (GEF)-mediated Arf1 activation and the TGN recruitment of PKD2, while ghrelin exerts the modulatory effect on Arf-GEF activation. Moreover, we reveal that the LPS-induced up-regulation in MMP-9 secretion is reflected in a marked increase in PKCδ-mediated PKD2 phosphorylation on Ser, while the modulatory effect of ghrelin is manifested by the SFK-PTKs-dependent phosphorylation of PKD2 on Tyr. The findings demonstrate that MT stabilization along with Arf-GEF-mediated Arf1/PKD2 activation play a major role in P. gingivalis LPS-induced up-regulation in salivary gland acinar cell MMP-9 secretion, and point the modulatory mode of action by ghrelin.

References

[1]  Nonnenmacher, C., Mutters, R. and de Jacoby, L.F. (2001) Microbiological Characteristics of Subgingival Microbiota in Adult Peri-odontitis, Localized Juvenile Periodontitis and Rapidly Progressive Periodontitis Subjects. Clinical Microbiology and Infection, 7, 213-221.
http://dx.doi.org/10.1046/j.1469-0691.2001.00210.x
[2]  Colombo, A.P., Boches, S.K. and Cotton, S.L. (2009) Comparisons of Subgingival Microbial Profiles of Refractory Periodontitis, Severe Periodontitis, and Periodontal Health Using the Human Oral Microbe Identification Microarray. Journal of Periodontology, 80, 1421-1432.
http://dx.doi.org/10.1902/jop.2009.090185
[3]  Mysak, J., Podzimek, S., Sommerova, P., et al. (2014) Porphyromonas gingivalis: Major Periodontopathic Pathogen Overview. Journal of Immunology Research, 2014, Article ID: 476068.
http://dx.doi.org/10.1155/2014/476068
[4]  Slomiany, B.L. and Slomiany, A. (2011) Ghrelin-Induced cSrc Activation through Constitutive Nitric Oxide Synthase- Dependent S-Nitrosylation in Modulation of Salivary Gland Acinar Cell Inflammatory Responses to Porphyromonas gingivalis. American Journal of Molecular Biology, 2, 43-51.
http://dx.doi.org/10.4236/ajmb.2011.12006
[5]  Slomiany, B.L. and Slomiany, A. (2015) Porphyromonas gingivalis-Stimulated TACE Activation for TGF-α Ectodomian Shedding and EGFR Transactivation in Salivary Gland Cells Requires Rac1-Dependent p38 MAPK Membrane Localization. Journal of Biosciences and Medicines, 3, 42-53.
http://dx.doi.org/10.4236/jbm.2015.311005
[6]  Ejeil, A.L., Igondio-Tchen, S., Ghomrasseni, S., Pellat, B., Godeau, G. and Gogly, B. (2003) Expression of Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs) in Healthy and Diseased Human Gingiva. Journal of Periodontology, 74, 188-195.
http://dx.doi.org/10.1902/jop.2003.74.2.188
[7]  Jotwani, R., Eswaran, S.V.K., Moonga, S. and Cutler, C.W. (2010) MMP-9/TIMP-1 Imballance Induced in Human Dendritic Cells by Porphyromonas gingivalis. FEMS Immunology and Medical Microbiology, 50, 314-321.
http://dx.doi.org/10.1111/j.1574-695X.2009.00637.x
[8]  Slomiany, B.L. and Slomiany, A. (2016) Role of Rac1/p38 and ERK-Dependent Cytosolic Phospholipase A2 Activation in Porphyromonas gingivalis-Evoked Induction in Matrix Metalloproteinase-9 (MMP-9) Release by Salivary Gland Cells. Journal of Biosciences and Medicines, 4, 68-79.
http://dx.doi.org/10.4236/jbm.2016.44010
[9]  Van den Steen, P.E., Van Aelst, I., Hvidberg, V., et al. (2006) The Hemopexin and O-Glycosylated Domains Tune Gelatinase B/MMP-9 Bioavailability via Inhibition and Binding to Cargo Receptors. Journal of Biological Chemistry, 281, 18626-18637.
http://dx.doi.org/10.1074/jbc.M512308200
[10]  Vandooren, J., Van den Steen, P.E. and Opdenakker, G. (2013) Biochemistry and Molecular Biology of Gelatinase B or Matrix Metalloproteinase-9 (MMP-9): The Next Decade. Critical Reviews in Biochemistry and Molecular Biology, 48, 222-272.
http://dx.doi.org/10.3109/10409238.2013.770819
[11]  Howes, S.C., Alushin, G.M., Shida, T., Nachury, M.V. and Nogales, E. (2014) Effects of Tubulin Acetylation and Tubulin Acetyltransferase Binding on Microtubule Structure. Molecular Biology of the Cell, 25, 257-266.
http://dx.doi.org/10.1091/mbc.E13-07-0387
[12]  Rozengurt, E. (2011) Protein Kinase D Signaling: Multiple Biological Functions in Health and Disease. Physiology, 26, 23-33.
http://dx.doi.org/10.1152/physiol.00037.2010
[13]  Bonnemaison, M.L., Eipper, B.A. and Mains, R.E. (2013) Role of Adaptor Proteins in Secretory Granule Biogenesis and Maturation. Frontiers in Endocrinology, 4, Article 101.
http://dx.doi.org/10.3389/fendo.2013.00101
[14]  Bourgoin, S.G. and El Azreq, M.A. (2012) Small Inhibitors of ADP-ribosylation Factor Activation and Function in Mammalian Cells. World Journal of Pharmacology, 1, 55-64.
http://dx.doi.org/10.5497/wjp.v1.i4.55
[15]  Hanania, R., Sun, H.S., Xu, K., et al. (2012) Classically Activated Macrophages Use Stable Microtubules for Matrix Metalloproteinase-9 (MMP-9) Secretion. Journal of Biological Chemistry, 287, 8468-8483.
http://dx.doi.org/10.1074/jbc.M111.290676
[16]  Goode, B.L., Drubin, D.G. and Barnes, G. (2000) Functional Cooperation between the Microtubule and Actin in Cytoskeletons. Current Opinions in Cell Biology, 12, 63-71.
http://dx.doi.org/10.1016/S0955-0674(99)00058-7
[17]  Gu, S., Liu, Y., Zhu, B., et al. (2016) Loss of α-Tubulin Acetylation Is Associated with TGF-Beta-Induced Epithelial- Mesenchymal Transition. Journal of Biological Chemistry, 291, 5396-5405.
http://dx.doi.org/10.1074/jbc.M115.713123
[18]  Sbai, O., Ould-Yahoui, A., Ferhart, I., et al. (2010) Differential Vesicular Distribution and Trafficking of MMP-2, MMP-9, and Their Inhibitors in Astrocytes. Glia, 58, 344-366.
[19]  Donaldson, J.G. and Jackson, C.L. (2011) ARF Family G Proteins and Their Regulators: Roles in Membrane Transport, Development and Disease. Nature Reviews Molecular Cell Biology, 12, 362-375. http://dx.doi.org/10.1038/nrm3117
[20]  Cherfils, J. and Zeghouf, M. (2013) Regulation of Small GTPases by GEFs, GAPs, and GDIs. Physiological Reviews, 93, 269-309.
http://dx.doi.org/10.1152/physrev.00003.2012
[21]  Pusapati, G.V., Krndija, D., Armacki, M., et al. (2010) Role of the Second Cysteine-Rich Domain and Pro275 in Protein Kinase D2 Interaction with ADP-Ribosylation Factor 1, Transgolgi-Golgi Network Recruitment, and Protein Transport. Molecular Biology of the Cell, 21, 1011-1022.
http://dx.doi.org/10.1091/mbc.E09-09-0814
[22]  Wille, C. Kohler, C., Armacki, M., et al. (2014) Protein Kinase D2 Induces Invasion of Pancreatic Cancer Cells by Regulating Matrix Metalloproteinases. Molecular Biology of the Cell, 25, 324-336.
http://dx.doi.org/10.1091/mbc.E13-06-0334
[23]  Eiseler, T., Wille, C., Koehler, C., Illing, A. and Seufferlein, T. (2016) Protein Kinase D2 Assembles a Multiprotein Complex at the Trans-Gologi Network to Regulate Matrix Metalloproteinase Secretion. Journal of Biological Chemistry, 291, 462-477.
http://dx.doi.org/10.1074/jbc.M115.673582
[24]  Waldron, R.T. and Rosengurt, E. (2003) Protein Kinase C Phosphorylates Protein Kinase D Activation Loop Ser744 and Ser748 and Releases Autoinhibition by the Pleckstrin Homology Domain. Journal of Biological Chemistry, 278, 154-163.
http://dx.doi.org/10.1074/jbc.M208075200
[25]  Doppler, H. and Storz, P. (2007) A Novel Tyrosine Phosphorylation Site in Protein Kinase D Contributes to Oxidative Stress-Mediated Activation. Journal of Biological Chemistry, 282, 31873-31881.
http://dx.doi.org/10.1074/jbc.M703584200
[26]  Ivison, S.M., Graham, N.R., Bernales, C.Q., et al. (2007) Protein Kinase D Interaction with TLR5 Is Required for Inflammatory Signal in Response to Bacterial Flagellin. Journal of Immunology, 178, 5735-5743.
http://dx.doi.org/10.4049/jimmunol.178.9.5735
[27]  Slomiany, B.L. and Slomiany, A. (2011) Role of Ghrelin-Induced cSrc Activation in Modulation of Gastric Mucosal Inflammatory Responses to Helicobacter pylori. Inflammopharmacology, 19, 197-204.
[28]  Lodeiro, M., Alen, B.O., Mosteiro, C.S., et al. (2011) The SHP-1 Protein Tyrosine Phosphatase Negatively Modulates Akt Signaling in the Ghrelin/GHSR1a System. Molecular Biology of the Cell, 22, 4182-4191.
http://dx.doi.org/10.1091/mbc.E11-04-0373
[29]  Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H. and Kangawa, K. (1999) Ghrelin Is a Growth-Hormone-Releasing Acetylated Peptide from Stomach. Nature, 402, 656-660.
http://dx.doi.org/10.1038/45230
[30]  Groschl, M., Topf, H.G., Bohlender, J., et al. (2005) Identification of Ghrelin in Human Saliva: Production by Salivary Glands and Potential Role in Proliferation of Oral Keratinocytes. Clinical Chemistry, 51, 997-1006.
http://dx.doi.org/10.1373/clinchem.2004.040667
[31]  Slomiany, B.L. and Slomiany, A. (2010) Suppression by Ghrelin of Porphyromonas gingivalis-Induced Constitutive Nitric Oxide Synthase S-Nitrosylation and Apoptosis in Salivary Gland Acinar Cells. Journal of Signal Transduction, 2010, Article ID: 643642.
http://dx.doi.org/10.1155/2010/643642
[32]  Slomiany, B.L. and Slomiany, A. (2011) Ghrelin Protects against the Detrimental Consequences of Porphyromonas gingivalis-Induced Akt Inactivation through S-Nitrosylation on Salivary Mucin Synthesis. International Journal of Inflammation, 2011, Article ID: 807279.
http://dx.doi.org/10.1007/s10787-014-0206-z
[33]  Beck, J., Garcia, R., Heiss, G., Vokonas, P.J. and Offenbacher, S. (1996) Periodontal Disease and Cardiovascular Disease. Journal of Periodontology, 67, 1123-1137.
http://dx.doi.org/10.1902/jop.1996.67.10s.1123
[34]  Huang, C.X., Yuan, M.J., Huang, H., et al. (2009) Ghrelin Inhibits Post-Infarct Myocardial Remodeling and Improves Cardiac Function through Anti-Inflammatory Effect. Peptides, 30, 2286-2291.
http://dx.doi.org/10.1016/j.peptides.2009.09.004
[35]  Slomiany, B.L. and Slomiany, A. (2015) Porphyromonas gingivalis-Induced GEF Dock180 Activation by Src/PKCδ-Dependent Phosphorylation Mediates PLCγ2 Amplification in Salivary Gland Acinar Cells: Effect of Ghrelin. Journal of Biosciences and Medicines, 3, 66-77.
http://dx.doi.org/10.4236/jbm.2015.37008
[36]  Slomiany, A., Grabska, M., Slomiany, B.A., Grzelinska, E., Morita, M. and Slomiany, B.L. (1993) Intracellular Transport, Organelle Biogenesis and Establishment of Golgi Identity: Impact of Brefeldin a on the Activity of Lipid Synthesizing Enzymes. International Journal of Biochemistry, 25, 891-901.
http://dx.doi.org/10.1016/0020-711X(93)90245-A
[37]  Slomiany, B.L., Murty, V.L.N., Piotrowski, J. and Slomiany, A. (1996) Salivary Mucins in Oral Mucosal Defense. General Pharmacology, 27, 761-771.
http://dx.doi.org/10.1016/0306-3623(95)02050-0
[38]  Slomiany, B.L. and Slomiany, A. (2004) Platelet-Activating Factor Mediates Porphyromonas gingivalis Lipopolysaccharide Interference with Salivary Mucin Synthesis via Phosphatidylinositol 3-Kinase-Dependent Constitutive Nitric Oxide Synthase Activation. Journal of Physiology and Pharmacology, 55, 85-98.
[39]  Slomiany, B.L. and Slomiany, A. (2014) Modulation of Gastric Mucosal Inflammatory Responses to Helicobacter pylori via Ghrelin-Induced Protein Kinase Cδ Tyrosine Phosphorylation. Inflammopharmacology, 22, 251-262.
http://dx.doi.org/10.1007/s10787-014-0206-z
[40]  Lee, J.Y., Choi, H.Y., Na, W.H., Ju, B.G. and Yune, T.Y. (2014) Ghrelin Inhibits BSCB Disruption/Hemorrhage by Attenuating MMP-9 and SUR1/TrpM4 Expression and Activation after Spinal Cord Injury. Biochimica et Biophysica Acta, 1842, 2403-2412.
http://dx.doi.org/10.1016/j.bbadis.2014.09.006
[41]  Ivessa, N.E., De Lemos-Chiarandini, C., Gravotta, D., Sabatini, D.D. and Kreibich, G. (1995) The Brefeldin A-induced Retrograde Transport from the Golgi Apparatus to the Endoplasmic Reticulum Depends on Calcium Sequestered to Intracellular Stores. Journal of Biological Chemistry, 270, 25960-25967.
http://dx.doi.org/10.1074/jbc.270.43.25960
[42]  Hubert, C., Guardiola, A., Shao, R., et al. (2002) HDAC6 Is a Microtubule-Associated Deacylase. Nature, 417, 455-458.
http://dx.doi.org/10.1038/417455a
[43]  Hauser, A., Storz, P., Martens, S., Link, G., Toker, A. and Pfizenmaier, K. (2005) Protein Kinase D Regulates Vesicular Transport by Phosphorylating and Activating Phosphatidylinositol-4-Kinase IIIBeta at the Golgi Complex. Nature Cell Biology, 7, 880-886.
http://dx.doi.org/10.1038/ncb1289

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133