In this paper, we propose an efficient adaptive iteratively reweighted l1 algorithm (A-IRL1 algorithm) for solving the elastic lq regularization problem. We prove that the sequence generated by the A-IRL1 algorithm is convergent for any rational and the limit is a critical point of the elastic lq regularization problem. Under certain conditions, we present an error bound for the limit point of convergent sequence.
References
[1]
Donoho, D.L. (2006) Compressed Sensing. IEEE Transactions on Information Theory, 52, 1289-1306. http://dx.doi.org/10.1109/TIT.2006.871582
[2]
Candès, E., Romberg, J. and Tao, T. (2006) Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information. IEEE Transactions on Information Theory, 52, 489-509. http://dx.doi.org/10.1109/TIT.2005.862083
[3]
Chartrand, R. (2007) Exact Reconstruction of Sparse Signals via Nonconvex Minimization. IEEE Signal Processing Letters, 14, 707-710. http://dx.doi.org/10.1109/LSP.2007.898300
[4]
Xu, Z.B., Chang, X.Y., Xu, F.M. and Zhang, H. (2012) L1/2 Regularization: A Thresholding Representation Theory and a Fast Solver. IEEE Transactions on Neural Networks and Learning Systems, 23, 1013-1027. http://dx.doi.org/10.1109/TNNLS.2012.2197412
[5]
Foucart, S. and Lai, M. (2009) Sparsest Solutions of Underdetermined Linear Systems via lq Minimization for 0<q≤1. Applied and Computational Harmonic Analysis, 26, 395-407. http://dx.doi.org/10.1016/j.acha.2008.09.001
[6]
Chen, S.S., Donoho, D.L. and Saunders, M.A. (1998) Atomic Decomposition by Basis Pursuit. SIAM Journal on Scientific Computing, 20, 33-61. http://dx.doi.org/10.1137/S1064827596304010
[7]
Daubechies, I., Defrise, M. and Christine, D.M. (2004) An Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint. Communications on Pure and Applied Mathematics, 57, 1413-1457. http://dx.doi.org/10.1002/cpa.20042
[8]
Candes, E.J., Wakin, M.B. and Boyd, S.P. (2008) Enhancing Sparity by Reweighted l1 Minimization. Journal of Fourier Analysis and Applications, 14, 877-905. http://dx.doi.org/10.1007/s00041-008-9045-x
[9]
Daubechies, I., Devore, R., Fornasier, M. and Güntük, C.S. (2010) Iteratively Reweighted Least Suqares Minimization for Sparse Recovery. Communications on Pure and Applied Mathematics, 63, 1-38. http://dx.doi.org/10.1002/cpa.20303
[10]
Zou, H. and Hastie, T. (2005) Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society: Series B, 67, 301-320. http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
[11]
Tibshirani, R. (1996) Regression Shrinkage and Selection via The Lasso. Journal of the Royal Statistical Society: Series B, 58, 267-288.
[12]
Jin, B.T., Lorenz, D.A. and Schiffler, S. (2009) Elastic-Net Regularization: Error Estimates and Active Set Methods. Inverse Problems, 25, Article ID: 115022. http://dx.doi.org/10.1088/0266-5611/25/11/115022
[13]
De Mola, C., De Vitob, E. and Rosasco, L. (2009) Elastic-Net Regularization in Learning Theory. Journal of Complexity, 25, 201-230. http://dx.doi.org/10.1016/j.jco.2009.01.002
[14]
Lai, M.J., Xu, Y.Y. and Yin, W.T. (2013) Improved Iteratively Reweighted Least Squares for Unconstrained Smoothed lq Minimization. SIAM Journal on Numerical Analysis, 51, 927-957. http://dx.doi.org/10.1137/110840364
[15]
Donoho, D.L. and Tsaig, Y. (2008) Fast Solution of l1 Norm Minimization Problems When the Solution May Be Sparse. IEEE Transactions on Information Theory, 54, 4789-4812. http://dx.doi.org/10.1109/TIT.2008.929958
[16]
Garcia, C.B. and Li, T.Y. (1980) On the Number of Solutions to Polynomial Systems of Equations. SIAM Journal on Numerical Analysis, 17, 540-546. http://dx.doi.org/10.1137/0717046