%0 Journal Article
%T An Efficient Adaptive Iteratively Reweighted <font style="font-family:Mistral; font-size:20pt;"><i>l</i></font><sub>1</sub> Algorithm for Elastic <font style="font-family:Mistral; font-size:20pt;"><i>l</i></font><sub>q</sub> Regularization
%A Yong Zhang
%A Wanzhou Ye
%J Advances in Pure Mathematics
%P 498-506
%@ 2160-0384
%D 2016
%I Scientific Research Publishing
%R 10.4236/apm.2016.67036
%X In this paper, we propose an efficient adaptive iteratively reweighted l1 algorithm (A-IRL1 algorithm) for solving the elastic lq regularization problem. We prove that the sequence generated by the A-IRL1 algorithm is convergent for any rational
and the limit is a critical point of the elastic lq regularization problem. Under certain conditions, we present an error bound for the limit point of convergent sequence.
%K Compressed Sensing
%K Elastic <
%K font style="
%K font-family:Mistral
%K font-size:20pt
%K "
%K >
%K <
%K i>
%K l<
%K /i>
%K <
%K /font>
%K <
%K sub>
%K q<
%K /sub>
%K Minimization
%K Nonconvex Optimization
%K Convergence
%K Critical Point
%U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=67409