%0 Journal Article %T An Efficient Adaptive Iteratively Reweighted <font style="font-family:Mistral; font-size:20pt;"><i>l</i></font><sub>1</sub> Algorithm for Elastic <font style="font-family:Mistral; font-size:20pt;"><i>l</i></font><sub>q</sub> Regularization %A Yong Zhang %A Wanzhou Ye %J Advances in Pure Mathematics %P 498-506 %@ 2160-0384 %D 2016 %I Scientific Research Publishing %R 10.4236/apm.2016.67036 %X In this paper, we propose an efficient adaptive iteratively reweighted l1 algorithm (A-IRL1 algorithm) for solving the elastic lq regularization problem. We prove that the sequence generated by the A-IRL1 algorithm is convergent for any rational \"\" and the limit is a critical point of the elastic lq regularization problem. Under certain conditions, we present an error bound for the limit point of convergent sequence. %K Compressed Sensing %K Elastic < %K font style=" %K font-family:Mistral %K font-size:20pt %K " %K > %K < %K i> %K l< %K /i> %K < %K /font> %K < %K sub> %K q< %K /sub> %K Minimization %K Nonconvex Optimization %K Convergence %K Critical Point %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=67409