全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类分数阶微分方程解的性质探讨
Exploration on the Nature of Solutions for a Differential Equation of Fractional Order

DOI: 10.12677/PM.2016.61009, PP. 56-64

Keywords: 分数阶微分方程,Caputo微分,Schauder不动点定理,压缩映象原理
Differential Equation of Fractional Order
, Caputo Derivative, Schauder Fixed Point Theorem, Contraction Mapping Principle

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要证明了一类分数阶非线性微分方程解的存在性和唯一性。文中用到的微分算子是Caputo分数阶微分算子。因这类方程的可解性是与一类Volterra型的积分方程的可解性等价,所以我们主要研究了与之等价的积分方程解的存在性和唯一性。我们通过Schauder不动点定理证明了积分方程解的存在性,用压缩映象原理证明了解的唯一性。
We prove existence and uniqueness of the solution of a nonlinear differential equation of fractional order. The differential operator is the Caputo fractional derivative. For the solvability of the equation is equivalent to a class of Volterra integral equation, we study the existence and uniqueness of the integral equation. We prove the existence of the solution of integral equation by Schau- der fixed point theorem and the uniqueness of the solution by contraction mapping principle.

References

[1]  Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.
[2]  Podlubny, I. (1999) Fractional Differential Equations. Academic Press, San Diego.
[3]  Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach. Gordon and Breach Science Publishers, Yverdon.
[4]  West, B.J., Bologna, M. and Grigolini, P. (2003) Physics of Fractal Operators. Springer, New York.
http://dx.doi.org/10.1007/978-0-387-21746-8
[5]  Daftardar-Gejji, V. and Babakhani, A. (2004) Analysis of a System of Fractional Differential Equations. Journal of Mathematical Analysis and Applications, 293, 511-522.
http://dx.doi.org/10.1016/j.jmaa.2004.01.013
[6]  Diethelm, K. and Ford, N.J. (2002) Analysis of Fractional Differential Equations. Journal of Mathematical Analysis and Applications, 265, 229-248.
http://dx.doi.org/10.1006/jmaa.2000.7194
[7]  Delbosco, D. and Rodino, L. (1996) Existence and Uniqueness for a Nonlinear Fractional Differential Equation. Journal of Mathematical Analysis and Applications, 204, 609-625.
http://dx.doi.org/10.1006/jmaa.1996.0456
[8]  El-Sayed, A.M.A. (1988) Fractional Differential Equations. Kyungpook Math. J, 28, 22-28.
[9]  Kosmatov, N. (2009) Integral Equations and Initial Value Problems for Nonlinear Differential Equations of Fractional Order. Nonlinear Analysis: Theory, Methods & Applications, 70, 2521-2529.
http://dx.doi.org/10.1016/j.na.2008.03.037
[10]  Caputo, M. (1967) Linear Models of Dissipation Whose Q Is Almost Frequency Independent (Part II). Geophysical Journal International, 13, 529-539.
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133