|
Pure Mathematics 2016
一类分数阶微分方程解的性质探讨
|
Abstract:
[1] | Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York. |
[2] | Podlubny, I. (1999) Fractional Differential Equations. Academic Press, San Diego. |
[3] | Samko, S.G., Kilbas, A.A. and Marichev, O.I. (1993) Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach. Gordon and Breach Science Publishers, Yverdon. |
[4] | West, B.J., Bologna, M. and Grigolini, P. (2003) Physics of Fractal Operators. Springer, New York.
http://dx.doi.org/10.1007/978-0-387-21746-8 |
[5] | Daftardar-Gejji, V. and Babakhani, A. (2004) Analysis of a System of Fractional Differential Equations. Journal of Mathematical Analysis and Applications, 293, 511-522. http://dx.doi.org/10.1016/j.jmaa.2004.01.013 |
[6] | Diethelm, K. and Ford, N.J. (2002) Analysis of Fractional Differential Equations. Journal of Mathematical Analysis and Applications, 265, 229-248. http://dx.doi.org/10.1006/jmaa.2000.7194 |
[7] | Delbosco, D. and Rodino, L. (1996) Existence and Uniqueness for a Nonlinear Fractional Differential Equation. Journal of Mathematical Analysis and Applications, 204, 609-625. http://dx.doi.org/10.1006/jmaa.1996.0456 |
[8] | El-Sayed, A.M.A. (1988) Fractional Differential Equations. Kyungpook Math. J, 28, 22-28. |
[9] | Kosmatov, N. (2009) Integral Equations and Initial Value Problems for Nonlinear Differential Equations of Fractional Order. Nonlinear Analysis: Theory, Methods & Applications, 70, 2521-2529.
http://dx.doi.org/10.1016/j.na.2008.03.037 |
[10] | Caputo, M. (1967) Linear Models of Dissipation Whose Q Is Almost Frequency Independent (Part II). Geophysical Journal International, 13, 529-539. http://dx.doi.org/10.1111/j.1365-246X.1967.tb02303.x |