%0 Journal Article %T 一类分数阶微分方程解的性质探讨
Exploration on the Nature of Solutions for a Differential Equation of Fractional Order %A 林诗游 %A 任洁 %J Pure Mathematics %P 56-64 %@ 2160-7605 %D 2016 %I Hans Publishing %R 10.12677/PM.2016.61009 %X
本文主要证明了一类分数阶非线性微分方程解的存在性和唯一性。文中用到的微分算子是Caputo分数阶微分算子。因这类方程的可解性是与一类Volterra型的积分方程的可解性等价,所以我们主要研究了与之等价的积分方程解的存在性和唯一性。我们通过Schauder不动点定理证明了积分方程解的存在性,用压缩映象原理证明了解的唯一性。
We prove existence and uniqueness of the solution of a nonlinear differential equation of fractional order. The differential operator is the Caputo fractional derivative. For the solvability of the equation is equivalent to a class of Volterra integral equation, we study the existence and uniqueness of the integral equation. We prove the existence of the solution of integral equation by Schau- der fixed point theorem and the uniqueness of the solution by contraction mapping principle.
%K 分数阶微分方程,Caputo微分,Schauder不动点定理,压缩映象原理
Differential Equation of Fractional Order %K Caputo Derivative %K Schauder Fixed Point Theorem %K Contraction Mapping Principle %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=16854