Nowadays, the productivity of ultra-precision machining is fundamentally limited by low feed rates because of the required accuracies in the nanometre range. An increase in motion dynamics leads to disturbances that affect the toolpath’s accuracy. Existing control concepts are not able to reliably detect and compensate the deviations caused by increased dynamics. This paper compares modelling approaches for ultra-precision positioning systems aiming to predict and compensate occurring deviations.
References
[1]
Mekid, S. (2008) Introduction to Precision Machine Design and Error Assessment. CRC Press, Boca Raton.
[2]
Brinksmeier, E., Denkena, B., Kuhfuss, B. and Riemer, O. (2013) Muss ultrapräzision zeitund kostenintensiv sein? Mikroproduktion, 3, 44-52.
[3]
Schönemann, L., Sassi, N., Krüger, R., Bloem, A., Denkena, B. and Kuhfuä, B. (2015) Ultrapräzise Hochleistung-sbearbeitung, Teil 2: Potentiale Elektromagnetischer Linearführungen Kombiniert mit Modellbasierten Steuerung-skonzepten. Werkstattstechnik Online, 7/8, 469-474.
[4]
Peters, R., Litwinski, K., Overmeyer, L. and Denkena, B. (2013) Model-Based Feedback Control via Control Integrated Observers. 15th International Conference on Precision Engineering in Kanazawa, Kanazawa City, 22-25 July 2014.
[5]
Steinlin, M. (2013) Model Based Feed-Rate Optimization for Machine tool Trajectories. Dissertation, ETH, Zurich.
[6]
Guiassa, R. and Mayer, R. (2011) Predictive Compliance Based Model for Compensation in Multi-Pass Milling by On-Machine Probing. CIRP Annals—Manufacturing Technology, 60, 391-394.
[7]
Kong, L.B., Cheung, C.F., Toa, S., Lee, W.B., Dub, J.J. and Zhang, Z.J. (2008) A Kinematics and Experimental Analysis of Form Error Compensation in Ultra-Precision Machining. International Journal of Machine Tools & Manufacture, 48, 1408-1419. http://dx.doi.org/10.1016/j.ijmachtools.2008.05.002
[8]
Kono, D., Matsubara, A., Yamaji, I. and Fujita, T. (2008). High-Precision Machining by Measurement and Compensation of Motion Error. International Journal of Machine Tools & Manufacture, 48, 1103-1110.
http://dx.doi.org/10.1016/j.ijmachtools.2008.02.005
[9]
Liang, Y.C., Chen, W.Q., Bai, Q.S., Sun, Y.Z., Chen, G.D., Zhang, Q. and Sun, Y. (2013) Design and Dynamic Optimization of an Ultraprecision Diamond Flycutting Machine Tool for Large KDP Crystal Machining. International Journal of Manufacturing Technology, 69, 237-244. http://dx.doi.org/10.1007/s00170-013-5020-z
[10]
Huo, D.H., Cheng, K. and Wardle, F. (2010) Design of a Five-Axis Ultra-Precision Micro-Milling Machine—Ultra Mill. Part 2: Integrated Dynamic Modelling, Design Optimisation and Analysis. International Journal of Manufacturing Technology, 47, 879-890. http://dx.doi.org/10.1007/s00170-009-2129-1
[11]
Uhlmann, E., Eβmann, J. and Wintering, J.-H. (2012) Design- and Control-Concept for Compliant Machine Tools Based on Controller Integrated Models. CIRP Annals—Manufacturing Technology, 61, 347-350.
http://dx.doi.org/10.1016/j.cirp.2012.03.143
[12]
Jönsson, A., Wall, J. and Broman, G. (2005) A Virtual Machine Concept for Real-Time Simulation of Machine Tool Dynamics. International Journal of Machine Tools & Manufacture, 45, 795-801.
http://dx.doi.org/10.1016/j.ijmachtools.2004.11.012
[13]
Sekler, P., Voβ, M. and Verl, A. (2012) Model-Based Calculation of the System Behavior of Machine Structures on the Control Device for Vibration Avoidance. International Journal of Advanced Manufacturing Technology, 58, 1087-1095. http://dx.doi.org/10.1007/s00170-011-3450-z
[14]
Denkena, B., Guemmer, O. and Floeter, F. (2014) Evaluation of Electromagnetic Guides in Machine Tools. Annals of the CIRP, (63/1), 357-360. http://dx.doi.org/10.1016/j.cirp.2014.03.130
[15]
Zirn, O. (2008) Machine Tool Analysis-Modeling, Simulation and Control of Machine Tool Manipulators. ETH Zurich, Institute ofMachine Tools and Manufacturing, Zurich.