全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

堆叠去噪自编码器在垃圾邮件过滤中的应用

Keywords: 堆叠去噪自编码器,垃圾邮件,分类,支持向量机,贝叶斯方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对垃圾邮件数量日益攀升的问题,提出了将堆叠去噪自编码器应用到垃圾邮件分类中.首先,在无标签数据集上,使用无监督学习方法最小化重构误差,对堆叠去噪自编码器进行贪心逐层预训练,从而获得原始数据更加抽象和健壮的特征表示;然后,在堆叠去噪自编码器的最上层添加一个分类器后,在有标签数据集上,利用有监督学习方法最小化分类误差,对预训练获得的网络参数进行微调,获得最优化的模型;最后,利用训练完成的堆叠去噪编码器在6个不同的公开数据集上进行测试.将准确率、召回率、更具有平衡性的马修斯相关系数作为实验性能评价标准,实验结果表明,相比支持向量机算法、贝叶斯方法和深度置信网络的分类效果,基于堆叠去噪自编码器的垃圾邮件分类器的准确率都高于95%,马修斯相关系数都大于0.88,在应用中具有更高的准确率和更好的健壮性.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133