%0 Journal Article %T 堆叠去噪自编码器在垃圾邮件过滤中的应用 %A 李艳涛 %A 冯伟森 %J 计算机应用 %D 2015 %X ?针对垃圾邮件数量日益攀升的问题,提出了将堆叠去噪自编码器应用到垃圾邮件分类中.首先,在无标签数据集上,使用无监督学习方法最小化重构误差,对堆叠去噪自编码器进行贪心逐层预训练,从而获得原始数据更加抽象和健壮的特征表示;然后,在堆叠去噪自编码器的最上层添加一个分类器后,在有标签数据集上,利用有监督学习方法最小化分类误差,对预训练获得的网络参数进行微调,获得最优化的模型;最后,利用训练完成的堆叠去噪编码器在6个不同的公开数据集上进行测试.将准确率、召回率、更具有平衡性的马修斯相关系数作为实验性能评价标准,实验结果表明,相比支持向量机算法、贝叶斯方法和深度置信网络的分类效果,基于堆叠去噪自编码器的垃圾邮件分类器的准确率都高于95%,马修斯相关系数都大于0.88,在应用中具有更高的准确率和更好的健壮性. %K 堆叠去噪自编码器 %K 垃圾邮件 %K 分类 %K 支持向量机 %K 贝叶斯方法 %U http://www.joca.cn/CN/abstract/abstract18845.shtml