全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种面向不平衡数据的结构化svm集成算法

, PP. 123-127

Keywords: 不平衡数据,结构化,支持向量机,集成学习

Full-Text   Cite this paper   Add to My Lib

Abstract:

不平衡数据在实际应用中广泛存在,如何处理不平衡数据成为目前一个新的研究热点.鉴于最大间隔思想在很多分类问题中的优越性,将最大间隔思想引入到非平衡分类问题中,使用svm的方法取得了很好的分类性能.本文在利用类间分布信息的同时,加上类内结构信息,使用结构化的svm作为基分类器,进行分类集成.实验表明该方法可对不平衡数据进行有效的分类.

References

[1]  barandelar,valdovinosrm,sanchezjs,eta.ltheimbalancedtrainingsampleproblem:underoroversampling[c]//procofinternationalworkshopsonstr-uctura,lsyntactic,andstatisticalpatternrecognition.lisbon,2004.
[2]  chawlanv,halllo,bowyerkw,eta.lsmote:syntheticminorityoversamplingtechnique[j].journalofartificialintell-igenceresearch,2002,16(6):321-357.
[3]  liuyang,anaijun,huangxiangj.iboostingpredictionaccuracyonimbalanceddatasetswithsvmensembles[c]//proceedingsofthe10thpacific-asiaconferenceonadavancesinknowledgediscoveryanddatamining.berlin,2006.
[4]  chawlanv.c415andimbalanceddatasets:investigatingtheeffectofsamplingmethod,probabilisticestimate,anddec-isiontreestructure[c]//proceedingsofinternationalconferenceonmachinelearning.washingtondc,2003.
[5]  brefeldu,scheffert.aucmaximizingsupportvectorlearning[c]//proceedingsofinternationalconferenceonmachinelearningworkshoponrocanalysisinmachinelearning.bonn,2005.
[6]  amaris,wus.improvingsupportvectormachineclassifiersbymodifyingkernelfunctions[j].neuralnetworks,1999,12(6):783-789.
[7]  vapnikv.statisticallearningtheory[m].newyork:johnwileyandsons,1998.
[8]  wush,linkp,chencm.asymmetricsupportvectormachines:lowfalsepositivelearningundertheusertolerance[c]//proceedingofthe14thacmsigk-ddinternationalconferenceonknowledgediscoveryanddatamining.newyork,2008.
[9]  张青青,陈松灿.非平衡类的异常检测研究[d].南京:南京航空航天大学信息科学与技术学院,2010.
[10]  huangfaliang,xieguoqing,xiaoruliang.researchonensemblelearning[c]//proceedingoftheinternationalconferenceonartificialintelligenceandcomputationalintelligence.shangha,i2009.
[11]  yeungds,wangd,ngwwy,eta.lstructuredlargemarginmachines:sens-itivetodatadistributions[j].machinelearning,2007,68(2):171-200.
[12]  xueh,chens,yangq.structuralsupportvectormachines[c]//proceedingsofthe15thinternationalsymposiumonneuralnetworks.beijing,2008.
[13]  hehaibo,edwardoagarcia.learningformimbalanceddata[j].ieeetransactionsonknowledgeanddataengineering,2009,21(9):1263-1284.
[14]  batisageapa,pratirc,monardmc.astudyofthebehaviorofseveralmethodsforbalancingmachinelearningtrainingdata[j].acmsigkddexplorationsnewletter,2004,6(1):20-29.
[15]  fanwe,istolfosj,zhangjunxin,eta.ladacost:misclassificationcostsensitiveboosting[c]//proceedingsofthe16thinternationalconferenceonmachinelearning,1999.
[16]  joshim,kumarv,agarwalr.evaluatingboostingalgorithmstoclassifyrareclasses:comparisonandimprovements[c]//proceedingsofthefirstieeeinternationalconferenceondatamining,2001.
[17]  pazzanim,merzc,murphyp,eta.lreducingmisclassificationcosts[c]//proceedingsofthe11thinternationalconferenceonmachinelearning.sanfrancisco,1994.[8]yanminsun,mohamedskame,landrewkcwong,eta.lcost-sensitiveboostingforclassificationofimbalanceddata[j].patternrecognition,2007,40(2):3358-3378.
[18]  cardiec,howen.improvingminorityclasspredictingusingcase-specificfeatureweighted[c]//proceedingsofthe14thinternationalconferenceonmachinelearning.sanfrancisco,1997.
[19]  zhengzh,harirsr.optimallycombiningpositiveandnegativefeaturesfortextcategorization[c]//proceedingsofinternationalconferenceonmachinelearning.washingtondc,2003.
[20]  japkowiczn,stephens.theclassimbalanceproblem:asystematicstudy[j].intelligentdataanalysis,2002,6(5):203-231.
[21]  zhouzhihua,linan.mult-iinformationensemblediversity[c]//proceedingsofthe9thinternationalworkshoponmult-ipleclassifiersystems.cairoegypt,2010.
[22]  taodacheng,tangxiaoou,lixuelong,eta.lasymmetricbaggingandrandomsubspaceforsupportvectormachines-basedrelevancefeedbackinimageretrieval[j].ieeetransactionsonpatternanalysisandmachineintelligence,2006,28(7):1088-1099.
[23]  liuxuying,wujianxin,zhouzhihua.exploratoryundersamplingforclassimbalancelearning[j].ieeetransactionsonsystems,manandcybernetics-partb:cybernetics,2009,39(2):539-550.
[24]  yulean,wangshouyang,kinkeungla.iinvestigationofdiversitystrateg-iesinsvmensemblelearning[c]//proceedingsofthe4thinternationalconferenceonnaturalcomputation.jinan,2008:39-42.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133